[1]袁菁菁,何光裕,陈海群.三维多级纳米结构CoNi2S4的构筑及其超级电容性能[J].常州大学学报(自然科学版),2023,35(05):1-7.[doi:10.3969/j.issn.2095-0411.2023.05.001]
 YUAN Jingjing,HE Guangyu,CHEN Haiqun.Construction of 3D hierarchical nanostructured CoNi2S4 and its supercapacitor properties[J].Journal of Changzhou University(Natural Science Edition),2023,35(05):1-7.[doi:10.3969/j.issn.2095-0411.2023.05.001]
点击复制

三维多级纳米结构CoNi2S4的构筑及其超级电容性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年05期
页码:
1-7
栏目:
材料科学与工程
出版日期:
2023-09-28

文章信息/Info

Title:
Construction of 3D hierarchical nanostructured CoNi2S4 and its supercapacitor properties
文章编号:
2095-0411(2023)05-0001-07
作者:
袁菁菁何光裕陈海群
(常州大学 石油化工学院, 江苏 常州 213164)
Author(s):
YUAN Jingjing HE Guangyu CHEN Haiqun
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
多级纳米结构 硫化镍钴 超级电容器 自组装
Keywords:
hierarchical nanostructures nickel cobalt sulfide supercapacitor self-assembly
分类号:
TB 3
DOI:
10.3969/j.issn.2095-0411.2023.05.001
文献标志码:
A
摘要:
针对超级电容器电极材料比电容量和倍率性能低的问题,提出构筑三维(3D)多级纳米结构电极材料的思路,以提供更多的电化学反应活性位点。以过渡双金属CoNi2S4为研究对象,通过引入结构导向剂,在两步水热法条件下,自组装形成具有3D多级纳米结构的电极材料。该结构由无数纳米纤维从内芯到外表面相互交织而成,构成稳定的直径约为2μm的纳米球。该3D多级纳米结构的比表面积为22.9 m2/g,且分布了孔径为5~20 nm的纳米孔。作为超级电容器电极材料,CoNi2S4材料表现出1 299.4 F/g的比电容,即使在50 A/g的超高电流密度下,该电极材料的比电容仍可保留23.8%,显示出优良的比电容量和倍率性能。
Abstract:
In view of the low specific capacitance and rate performance of supercapacitor electrode materials, the idea of constructing three-dimensional(3D)hierarchical nanostructured electrode materials is proposed to provide more active sites for electrochemical reactions. Taking transition bimetallic CoNi2S4 as the research object, the electrode material with 3D hierarchical nanostructure was formed by self-assembly under the condition of introducing structure directing agent and two-step hydrothermal method. The structure consists of countless nanofibers interwoven from the inner core to the outer surface, forming stable nanospheres with a diameter of about 2 μm. The 3D hierarchical nanostructure exhibited a specific surface area of 22.9 m2/g and distributed nanopores with pore sizes ranging from 5—20 nm. When used as a supercapacitor electrode material, the CoNi2S4 material exhibited a specific capacitance of 1 299.4 F/g. Even at an ultra-high current density of 50 A/g, the specific capacitance of the electrode material could still retain 23.8%, showing its excellent specific capacitance and rate performance.

参考文献/References:

[1] LI P, SHANG T X, DONG X M, et al. A review of compact carbon design for supercapacitors with high volumetric performance[J]. Small, 2021, 17(48): e2007548.
[2] YANG X E, WANG Q A, ZHU K, et al. 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors[J]. Advanced Functional Materials, 2021, 31(20): 2101087.
[3] DU J, ZHANG Y, LYU H J, et al. Silicate-assisted activation of biomass towards N-doped porous carbon sheets for supercapacitors[J]. Journal of Alloys and Compounds, 2021, 853: 157091.
[4] LI Y J, LI W W, YANG C, et al. Engineering coordination polymer-derived one-dimensional porous S-doped Co3O4 nanorods with rich oxygen vacancies as high-performance electrode materials for hybrid supercapacitors[J]. Dalton Transactions, 2020, 49(30): 10421-10430.
[5] XU H, ZHAO Y T, HE G Y, et al. Race on engineering noble metal single-atom electrocatalysts for water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(31): 14257-14279.
[6] XU H, HUANG B J, ZHAO Y T, et al. Engineeringheterostructured Pd-Bi2Te3 doughnut/Pd hollow nanospheres for ethylene glycol electrooxidation[J]. Inorganic Chemistry, 2022, 61(10): 4533-4540.
[7] EDISON T N J I, ATCHUDAN R, KARTHIK N, et al. A novel binder-free electro-synthesis of hierarchical nickel sulfide nanostructures on nickel foam as a battery-type electrode for hybrid-capacitors[J]. Fuel, 2020, 276: 118077.
[8] CHEN X, LIU Q, BAI T, et al. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices[J]. Chemical Engineering Journal, 2021, 409: 127237.
[9] WANG Y K, LIU M C, CAO J Y, et al. 3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3709-3718.
[10] LIU P, SUI Y W, WEI F X, et al. Facile synthesis of CoNi2S4 nanoparticles grown on carbon fiber cloth for supercapacitor application[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(21): 19077-19086.
[11] MEI L, YANG T, XU C, et al. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors[J]. Nano Energy, 2014, 3: 36-45.
[12] RAJESH J A, PARK J H, VINHQUY V H, et al. Rambutan-like cobalt nickel sulfide(CoNi2S4)hierarchitecture for high-performance symmetric aqueous supercapacitors[J]. Journal of Industrial and Engineering Chemistry, 2018, 63: 73-83.
[13] YUAN J J, YAO D C, JIANG L, et al. Mn-doped NiMoO4 mesoporous nanorods/reduced graphene oxide composite for high-performance all-solid-state supercapacitor[J]. ACS Applied Energy Materials, 2020, 3(2): 1794-1803.
[14] TASA C, MAJEWSKI P J, ALDINGER F. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior[J]. Journal of the American Ceramic Society, 2002, 85(6): 1421-1429.
[15] SHEN L F, YU L, WU H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J]. Nature Communications, 2015, 6: 6694.
[16] LI L, HU H L, DING S J, et al. CoNi2S4 nanosheets on nitrogen-doped carbon foam as binder-free and flexible electrodes for high-performance asymmetric supercapacitors[J]. Nanotechnology, 2019, 30(49): 495404.
[17] GE Y Y, GAO J, ZHAO T. SBA-15/ACF hierarchical pore structure material with enhanced CO2 capture ability[J]. Materials Letters, 2019, 249: 77-80.
[18] SU C, XU S S, ZHANG L, et al. Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors[J]. Electrochimica Acta, 2019, 305: 81-89.
[19] CHEN L N, WAN J F, FAN L, et al. Construction of CoNi2S4 hollow cube structures for excellent performance asymmetric supercapacitors[J]. Applied Surface Science, 2021, 570: 151174.
[20] YUAN J J, ZHENG X K, YAO D C, et al. Amorphous mesoporous nickel phosphate/reduced graphene oxide with superior performance for electrochemical capacitors[J]. Dalton Transactions, 2018, 47(37): 13052-13062.

备注/Memo

备注/Memo:
收稿日期: 2023-03-23。
基金项目: 国家自然科学基金资助项目(22078028, 21978026)。
作者简介: 袁菁菁(1988—), 女, 江苏盐城人, 博士, 工程师。E-mail: yuanjj@cczu.edu.cn
更新日期/Last Update: 1900-01-01