参考文献/References:
[1] OVE A,SUSANNE N, ALISTAIR G. Method of making a submicron cemented carbide powder mixture with low compacting pressure: EP1749601B1[P]. 2007-02-07.
[2] ALM O, GREARSON A, NORGREN S. Method of making a submicron cemented carbide powder mixture with low compacting pressure and the resulting powder: US8425652[P]. 2013-04-23.
[3] QVICK J. Fine grained cemented carbide powder mixture with low sintering shrinkage and method of making the same: US20110271605[P]. 2011-11-10.
[4] GREARSON A, FAIR J, SANDBERG R. Method of making a cemented carbide powder mixture and the resulting cemented carbide powder mixture: US20070006678[P]. 2007-01-11.
[5] PETERSSON A, ÅGREN J. Rearrangement and pore size evolution during WC-Co sintering below the eutectic temperature[J]. Acta Materialia, 2005, 53(6): 1673-1683.
[6] CHAPPELL J S, RING T A, BIRCHALL J D. Particle size distribution effects on sintering rates[J]. Journal of Applied Physics, 1986, 60(1): 383-391.
[7] GERMAN R M, SURI P, PARK S J. Review: liquid phase sintering[J]. Journal of Materials Science, 2009, 44(1): 1-39.
[8] STAF H, KIS Z, SZENTMIKLÓSI L, et al. Determining the density distribution in cemented carbide powder compacts using 3D neutron imaging[J]. Powder Technology, 2019, 354: 584-590.
[9] HWANG K S, GERMAN R M, LENEL F V. Capillary forces between spheres during agglomeration and liquid phase sintering[J]. Metallurgical Transactions A, 1987, 18(1): 11-17.
[10] ALBDIRY M T, ALMOSAWI A I. Effect of compacting pressure on microstructure and mechanical properties of carbide cutting tools[J]. Powder Metallurgy, 2011, 54(5): 585-592.
[11] BJØRK R, TIKARE V, FRANDSEN H L, et al. The effect of particle size distributions on the microstructural evolution during sintering[J]. Journal of the American Ceramic Society, 2013, 96(1): 103-110.
[12] 陈振磊, 喻琛, 邵鸣宇. 不同粘结相硬质合金的研究进展[J]. 机械研究与应用, 2021, 34(5): 204-209, 212.
[13] 王鹏, 时凯华, 顾金宝, 等. 不同粘结相碳化钨基硬质合金的研究与应用(Ⅰ)[J]. 硬质合金, 2020, 37(1): 74-89.
[14] 邱玥, 王辉平, 孔毅, 等. 硬质合金界面的实验观测与第一性原理计算研究进展[J]. 材料导报, 2016, 30(21): 136-142.
[15] PELLAN M. Develop of grain boundaries and phase boundaries in WC Co cemented carbides[D]. Grenoble: Université Grenoble Alpes, 2006. 1-203.
[16] WEIDOW J, ANDRÉN H O. Grain and phase boundary segregation in WC-Co with small V, Cr or Mn additions[J]. Acta Materialia, 2010, 58(11): 3888-3894.
[17] WEIDOW J, ANDRÉN H O. Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(1): 38-43.
[18] KARAKOSTAS T, NOUET G, BLERIS G L, et al. Grain boundary analysis in TEM. I. Practical determination of bicrystal orientations[J]. Physica Status Solidi(a), 1978, 50(2): 703-709.
[19] PELLAN M, LAY S, MISSIAEN J M, et al. A new insight into the ∑=2 grain boundary characteristics in WC powder and in WC-Co sintered materials[J]. Acta Materialia, 2018, 155: 372-378.
[20] LUO Z S, HU C Z, XIE L, et al. A highly asymmetric interfacial superstructure in WC: expanding the classic grain boundary segregation and new complexion theories[J]. Materials Horizons, 2020, 7(1): 173-180.