[1]姜波,甘信峰,陈丽勇,等.成型位置对硬质合金数控刀片微结构的影响[J].常州大学学报(自然科学版),2023,35(05):8-15.[doi:10.3969/j.issn.2095-0411.2023.05.002]
 JIANG Bo,GAN Xinfeng,CHEN Liyong,et al.Effect of pressing position on the microstructure of cemented carbide computer numerical control machine inserts[J].Journal of Changzhou University(Natural Science Edition),2023,35(05):8-15.[doi:10.3969/j.issn.2095-0411.2023.05.002]
点击复制

成型位置对硬质合金数控刀片微结构的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年05期
页码:
8-15
栏目:
材料科学与工程
出版日期:
2023-09-28

文章信息/Info

Title:
Effect of pressing position on the microstructure of cemented carbide computer numerical control machine inserts
文章编号:
2095-0411(2023)05-0008-08
作者:
姜波12甘信峰3陈丽勇4王超12乐天12宋仁国12
(1.常州大学 材料科学与工程学院, 江苏 常州 213164; 2.江苏省材料表面科学与技术重点实验室(常州大学), 江苏 常州 213164; 3.株洲钻石切削刀具股份有限公司 质控部, 湖南 株洲 412000; 4.江西理工大学 材料冶金化学学部, 江西 赣州 341000)
Author(s):
JIANG Bo12 GAN Xinfeng3 CHEN Liyong4 WANG Chao12 LE Tian12 SONG Renguo12
(1.School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2.Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, China; 3.Department of Quality Control, Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou 412000, China; 4.Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China)
关键词:
数控刀片 成型位置 粒度分布 晶界
Keywords:
computer numerical control machine inserts pressing position size distribution grain boundary
分类号:
TG 135.5
DOI:
10.3969/j.issn.2095-0411.2023.05.002
文献标志码:
A
摘要:
以数控刀片SPMT120408-PM为对象,通过扫描电镜与电子背散射衍射技术,研究成型位置(刀尖与中性层)对合金内部微结构的影响。研究结果显示,成型位置对碳化钨(WC)颗粒形貌无明显影响,对粒度分布、∑2晶界、Co相类型影响显著。其成型位置刀尖的WC当量粒径分布宽度显著大于中性层,中性层粒度更均匀且亚晶比例更高。刀尖与中性层重位点阵(CSL点阵)晶界均以∑2晶界为主,且刀尖∑2晶界长度百分比显著高于中性层。此外,成型位置影响高温稳定相fcc-Co向低温稳定相hcp-Co的转变,刀尖以fcc-Co与hcp-Co两相混合为主,中性层以hcp-Co为主。
Abstract:
Effect of pressing position(cutting edge and middle layer)on the microstructure of the cemented carbide inserts of SPMT120408-PM has been investigated. The results show that pressing position plays no significant role on WC morphology but has great impact on the grain size distribution,∑2 grain-boundary and types of Co. The equivalent grain size distribution of the cutting edge is remarkably wider than the middle layer, which means that the grain size is more homogeneous in the middle layer, and moreover, the length fraction of sub-grain boundary is much more higher. The main CSL grain boundary in both positions is ∑2, and the fraction of ∑2 in the cutting edge is remarkable higher than the middle layer. Furthermore, the forming position affects the transition of high temperature stable fcc-Co to low temperature stable hcp-Co, the cutting edge is mainly mixed with fcc-Co and hcp-Co, and the middle layer is mainly hcp-Co.

参考文献/References:

[1] OVE A,SUSANNE N, ALISTAIR G. Method of making a submicron cemented carbide powder mixture with low compacting pressure: EP1749601B1[P]. 2007-02-07.
[2] ALM O, GREARSON A, NORGREN S. Method of making a submicron cemented carbide powder mixture with low compacting pressure and the resulting powder: US8425652[P]. 2013-04-23.
[3] QVICK J. Fine grained cemented carbide powder mixture with low sintering shrinkage and method of making the same: US20110271605[P]. 2011-11-10.
[4] GREARSON A, FAIR J, SANDBERG R. Method of making a cemented carbide powder mixture and the resulting cemented carbide powder mixture: US20070006678[P]. 2007-01-11.
[5] PETERSSON A, ÅGREN J. Rearrangement and pore size evolution during WC-Co sintering below the eutectic temperature[J]. Acta Materialia, 2005, 53(6): 1673-1683.
[6] CHAPPELL J S, RING T A, BIRCHALL J D. Particle size distribution effects on sintering rates[J]. Journal of Applied Physics, 1986, 60(1): 383-391.
[7] GERMAN R M, SURI P, PARK S J. Review: liquid phase sintering[J]. Journal of Materials Science, 2009, 44(1): 1-39.
[8] STAF H, KIS Z, SZENTMIKLÓSI L, et al. Determining the density distribution in cemented carbide powder compacts using 3D neutron imaging[J]. Powder Technology, 2019, 354: 584-590.
[9] HWANG K S, GERMAN R M, LENEL F V. Capillary forces between spheres during agglomeration and liquid phase sintering[J]. Metallurgical Transactions A, 1987, 18(1): 11-17.
[10] ALBDIRY M T, ALMOSAWI A I. Effect of compacting pressure on microstructure and mechanical properties of carbide cutting tools[J]. Powder Metallurgy, 2011, 54(5): 585-592.
[11] BJØRK R, TIKARE V, FRANDSEN H L, et al. The effect of particle size distributions on the microstructural evolution during sintering[J]. Journal of the American Ceramic Society, 2013, 96(1): 103-110.
[12] 陈振磊, 喻琛, 邵鸣宇. 不同粘结相硬质合金的研究进展[J]. 机械研究与应用, 2021, 34(5): 204-209, 212.
[13] 王鹏, 时凯华, 顾金宝, 等. 不同粘结相碳化钨基硬质合金的研究与应用(Ⅰ)[J]. 硬质合金, 2020, 37(1): 74-89.
[14] 邱玥, 王辉平, 孔毅, 等. 硬质合金界面的实验观测与第一性原理计算研究进展[J]. 材料导报, 2016, 30(21): 136-142.
[15] PELLAN M. Develop of grain boundaries and phase boundaries in WC Co cemented carbides[D]. Grenoble: Université Grenoble Alpes, 2006. 1-203.
[16] WEIDOW J, ANDRÉN H O. Grain and phase boundary segregation in WC-Co with small V, Cr or Mn additions[J]. Acta Materialia, 2010, 58(11): 3888-3894.
[17] WEIDOW J, ANDRÉN H O. Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(1): 38-43.
[18] KARAKOSTAS T, NOUET G, BLERIS G L, et al. Grain boundary analysis in TEM. I. Practical determination of bicrystal orientations[J]. Physica Status Solidi(a), 1978, 50(2): 703-709.
[19] PELLAN M, LAY S, MISSIAEN J M, et al. A new insight into the ∑=2 grain boundary characteristics in WC powder and in WC-Co sintered materials[J]. Acta Materialia, 2018, 155: 372-378.
[20] LUO Z S, HU C Z, XIE L, et al. A highly asymmetric interfacial superstructure in WC: expanding the classic grain boundary segregation and new complexion theories[J]. Materials Horizons, 2020, 7(1): 173-180.

备注/Memo

备注/Memo:
收稿日期: 2023-03-24。
基金项目: 国家自然科学基金资助项目(50904126)。
作者简介: 姜波(1983—), 女, 湖南新化人, 博士, 讲师。E-mail: jiangbo@cczu.edu.cn
更新日期/Last Update: 1900-01-01