参考文献/References:
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[2] NGUYEN T P, NGUYEN D M T, TRAN D L, et al. MXenes: applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction[J]. Molecular Catalysis, 2020, 486: 110850.
[3] DO H H, NGUYEN D L T, NGUYEN X C, et al. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review[J]. Arabian Journal of Chemistry, 2020, 13(2): 3653-3671.
[4] 邬纯晶, 杨超, 曹剑瑜, 等. 水热法合成NCQD/BiOCl复合物及其光催化分解水性能[J]. 常州大学学报(自然科学版), 2018, 30(3): 41-49.
[5] DOS SANTOS W S, ALMEIDA L D, AFONSO A S, et al. Photoelectrochemical water oxidation over fibrous and sponge-like BiVO4/β-Bi4V2O11 photoanodes fabricated by spray pyrolysis[J]. Applied Catalysis B: Environmental, 2016, 182: 247-256.
[6] ZHU T, CHONG M N, PHUAN Y W, et al. Electrochemically synthesized tungsten trioxide nanostructures for photoelectrochemical water splitting: influence of heat treatment on physicochemical properties, photocurrent densities and electron shuttling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484: 297-303.
[7] PHUAN Y W, CHONG M N, SATOKHEE O, et al. Synthesis and characterization of a novel ternary hematite nanocomposites structure with fullerene and 2D-electrochemical reduced graphene oxide for superior photoelectrochemical performance[J]. Particle & Particle Systems Characterization, 2017, 34(1): 1600216.
[8] DEO MALVIYA K, DOTAN H, SHLENKEVICH D, et al. Systematic comparison of different dopants in thin film hematite(α-Fe2O3)photoanodes for solar water splitting[J]. Journal of Materials Chemistry A, 2016, 4(8): 3091-3099.
[9] CHONG R F, WANG B Y, SU C H, et al. Dual-functional CoAl layered double hydroxide decorated α-Fe2O3 as an efficient and stable photoanode for photoelectrochemical water oxidation in neutral electrolyte[J]. Journal of Materials Chemistry A, 2017, 5(18): 8583-8590.
[10] DU X Q, CHE P, WANG Y, et al. Ni3S2@Co(OH)2 heterostructures grown on Ni foam as an efficient electrocatalyst for water oxidation[J]. International Journal of Hydrogen Energy, 2019, 44(41): 22955-22961.
[11] BARROSO M, COWAN A J, PENDLEBURY S R, et al. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation[J]. Journal of the American Chemical Society, 2011, 133(38): 14868-14871.
[12] BOUHJAR F, DERBALI L, MARÍ B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO: Co electron transport layer[J]. Nano Research, 2020, 13(9): 2546-2555.
[13] ZHANG P, WANG T, CHANG X X, et al. Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite[J]. Angewandte Chemie(International Ed in English), 2016, 55(19): 5851-5855.
[14] BORA D K, BRAUN A, ERNI R, et al. Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(30): 12648-12659.
[15] HUANG J W, HU G, DING Y, et al. Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation[J]. Journal of Catalysis, 2016, 340: 261-269.
[16] XU D Y, RUI Y, LI Y, et al. Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting[J]. Applied Surface Science, 2015, 358: 436-442.
[17] LI H X, YANG C, ZHANG J, et al. Co(OH)2 electrocatalyst decorated on TiO2 film for enhanced photoelectrocatalytic water oxidation[J]. Surface Review and Letters, 2020, 27(11): 2050003.
[18] ZHANG G G, ZANG S H, WANG X C. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation[J]. ACS Catalysis, 2015, 5(2): 941-947.
[19] LIU J, DU F P, ZHANG H J, et al. Ultra-tiny Co(OH)2 particles supported on graphene oxide for highly efficient electrocatalytic water oxidation[J]. RSC Advances, 2015, 5(49): 39075-39079.
[20] YI S S, WULAN B R, YAN J M, et al. Highly efficient photoelectrochemical water splitting: surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3p-n heterojunction nanorod arrays[J]. Advanced Functional Materials, 2019, 29(11): 1801902.
[21] DENG J J, ZHANG Q Z, FENG K, et al. Efficient photoelectrochemical water oxidation on hematite with fluorine-doped FeOOH and FeNiOOH as dual cocatalysts[J]. ChemSusChem, 2018, 11(21): 3783-3789.
[22] WANG Z L, LIU G J, DING C M, et al. Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting[J]. The Journal of Physical Chemistry C, 2015, 119(34): 19607-19612.
[23] KANG G Y, CHEN Y, LI J J. Comparison on structure and electrochemical performances of NiAl-LDH, CoAl-LDH and NiCoAl-LDH[J]. Journal of Inorganic Materials, 2016, 31(11): 1230.
[24] AN C H, WANG Y J, HUANG Y N, et al. Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties[J]. CrystEngComm, 2014, 16(3): 385-392.
[25] LI F, LI J, LI F W, et al. Facile regrowth of Mg-Fe2O3/P-Fe2O3 homojunction photoelectrode for efficient solar water oxidation[J]. Journal of Materials Chemistry A, 2018, 6(27): 13412-13418.
[26] KASRAI M, URCH D S. Electronic structure of iron(II)and(III)fluorides using X-ray emission and X-ray photoelectron spectroscopies[J]. Journal of the Chemical Society, 1979, 75: 1522.
[27] CHAI H, GAO L, WANG P, et al. In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial S—O for enhanced charge separation and transport in photoelectrochemical water oxidation[J]. Applied Catalysis B: Environmental, 2022, 305: 121011.
[28] DING R, QI L, WANG H Y. An investigation of spinel NiCo2O4 as anode for Na-ion capacitors[J]. Electrochimica Acta, 2013, 114: 726-735.
[29] DING R, QI L, WANG H Y. A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors[J]. Journal of Solid State Electrochemistry, 2012, 16(11): 3621-3633.
[30] ZHOU Q Y, FAN T, LI Y, et al. Hollow-structure NiCo hydroxide/carbon nanotube composite for high-performance supercapacitors[J]. Journal of Power Sources, 2019, 426: 111-115.
[31] WANG Y Z, LIU Y X, WANG C, et al. Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors[J]. Engineered Science, 2020: 50-59.
[32] GUO D X, SONG X M, TAN L C, et al. Hierarchical structured Ni3S2@rGO@NiAl-LDHs nanoarrays: a competitive electrode material for advanced asymmetrical supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2803-2810.
[33] LI S, ZHAO Q D, MENG D D, et al. Fabrication of metallic charge transfer channel between photoanode Ti/Fe2O3 and cocatalyst CoOx: an effective strategy for promoting photoelectrochemical water oxidation[J]. Journal of Materials Chemistry A, 2016, 4(42): 16661-16669.