[1]史文洋,杨志豪,朱庆杰,等.双分支断溶体储层合采水平井压力响应特征[J].常州大学学报(自然科学版),2023,35(05):40-52.[doi:10.3969/j.issn.2095-0411.2023.05.006]
 SHI Wenyang,YANG Zhihao,ZHU Qingjie,et al.Pressure response behavior of horizontal commingle production well in double branched fault-karst reservoirs[J].Journal of Changzhou University(Natural Science Edition),2023,35(05):40-52.[doi:10.3969/j.issn.2095-0411.2023.05.006]
点击复制

双分支断溶体储层合采水平井压力响应特征()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年05期
页码:
40-52
栏目:
石油与天然气工程
出版日期:
2023-09-28

文章信息/Info

Title:
Pressure response behavior of horizontal commingle production well in double branched fault-karst reservoirs
文章编号:
2095-0411(2023)05-0040-13
作者:
史文洋杨志豪朱庆杰陶磊白佳佳
(常州大学 石油与天然气工程学院, 江苏 常州 213164)
Author(s):
SHI Wenyang YANG Zhihao ZHU Qingjie TAO Lei BAI Jiajia
(School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China)
关键词:
断溶体油藏 水平合采井 压力响应 流动阶段 试井分析
Keywords:
fault-karst reservoirs horizontal commingled production well pressure response flow regimes well testing analysis
分类号:
TE 312
DOI:
10.3969/j.issn.2095-0411.2023.05.006
文献标志码:
A
摘要:
顺北断溶体油藏储层沿深大断裂及分支断裂发育,具有树型剖面特征,为了分析分支断溶储层动态连通对压力响应的影响,建立了双分支断溶体储层水平合采井压力响应模型。经过裂缝渗流-溶洞储集流-井筒管流的耦合、空间变换和数值反演方法,得到了双分支断溶体合采储层压力曲线,根据压力响应双对数曲线划分了储层流动阶段。各分支储层物性、空间位置以及重力效应的敏感性分析结果表明,压力导数V型曲线可直接诊断断溶体合采储层分支数量。V型曲线的出现时间受溶洞储集性、距离的影响,V型形状受裂缝物性、深度的影响,边界控制流段压力导数曲线斜率受重力效应大小的影响。研究结果为通过压力响应获取断溶体分支储层物性和空间位置提供了理论依据。
Abstract:
Fault-karst reservoirs in SHB Oilfield have tree-shape characteristics that reservoir develops along deep-large multibranched faults. Currenting fault-karst reservoirs are not considering the connectivity of multibranched fault-karst reservoir. In order to fill this gap, a novel pressure transient analysis model for horizontal commingled production well in double branched fault-karst reservoir was established. Through the flow coupling, spatial transformation and numerical inversion, the pressure solution of the double-branched fault-karst reservoir was obtained. The flow regimes were divided by the pressure response curve. The sensitivity analysis results of thephysical properties, locations and gravity effects of each branch fault-karst reservoir show that: first, the branches number could be directly obtained from the number of V-shaped on pressure derivative curve. Second, the time of V-shape appears was affected by storability and distance of cave region. Third, the shape of V-shape was affected by physical properties and depth of fracture region. Fourth, the slope of pressure derivative curve in the boundary control flow regime can capture gravity effect. The research results provide a method to diagnosing physical properties and position of multibranched fault-karst reservoir by analyzing transient pressure response.

参考文献/References:

[1] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
[2] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.
[3] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.
[4] 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部 “层控” 与 “断控” 型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469.
[5] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2):207-216.
[6] 漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135.
[7] 程晓军. 超深断溶体油藏油井见水特征及生产制度优化: 以塔里木盆地顺北油田Z井为例[J]. 新疆石油地质, 2021, 42(5): 554-558.
[8] 黎荣, 胡明毅, 潘仁芳, 等. 川中地区中二叠统断溶体发育特征及形成机制[J]. 中国石油勘探, 2019, 24(1): 105-114.
[9] 李一超, 杨飞, 徐天鑫, 等. 川西南井研地区灯影组断溶体形成机制与识别[J]. 断块油气田, 2020, 27(2): 193-197.
[10] 钟建华, 李阳, 袁向春, 等. 一种新的构造缝洞体系: 褶溶体[J]. 地质科学, 2021, 56(4): 1001-1014.
[11] 蒋廷学, 周珺, 贾文峰, 等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140-147.
[12] 刘宝增, 漆立新, 李宗杰, 等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4): 412-420.
[13] 王震, 文欢, 邓光校, 等. 塔河油田碳酸盐岩断溶体刻画技术研究与应用[J]. 石油物探, 2019, 58(1): 149-154.
[14] 常少英, 庄锡进, 邓兴梁, 等. 断溶体油藏高效井预测方法与应用效果: 以HLHT油田奥陶系潜山区为例[J]. 石油地球物理勘探, 2017, 52(S1): 199-206, 13.
[15] 李相文, 冯许魁, 刘永雷, 等. 塔中地区奥陶系走滑断裂体系解剖及其控储控藏特征分析[J]. 石油物探, 2018, 57(5): 764-774.
[16] 唐海, 何娟, 荣元帅, 等. 塔河断溶体油藏典型断溶体注水驱替规律及剩余油分布特征[J]. 油气地质与采收率, 2018, 25(3): 95-100.
[17] 吕艳萍, 罗君兰, 王炯, 等. 塔河油田典型碳酸盐岩断溶体发育模式[J]. 西安石油大学学报(自然科学版), 2021, 36(1): 20-27.
[18] 顾浩, 康志江, 尚根华, 等. 基于物质平衡的超深断溶体油藏弹性驱产能主控因素分析[J]. 油气地质与采收率, 2021, 28(4): 86-92.
[19] 顾浩, 尚根华, 李慧莉, 等. 基于井温的超深断溶体油藏油井动用深度计算[J]. 特种油气藏, 2021, 28(2): 57-62.
[20] 郑函庆, 丁心鲁, 刘学清, 等. 塔里木盆地碳酸盐岩缝洞型储层试井资料特征及KT1井储层缝洞组合关系认识[J]. 石油地质与工程, 2021, 35(4): 26-29, 37.
[21] BARENBLATT G I, ZHELTOV I, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks strata[J]. Journal of Applied Mathematics and Mechanics, 1960, 24: 1286-1303.
[22] WARREN J, ROOT P. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255.
[23] DE SWAAN A. Analytic solutions for determining naturally fractured reservoir properties by well testing[J]. Society of Petroleum Engineers Journal, 2013, 16(3): 117-122.
[24] DODDY A, IRAJ E. Triple-porosity systems for representing naturally fractured reservoirs[J]. SPE Formation Evaluation, 1986, 1(2): 113-127.
[25] AL-GHAMDI A, ERSHAGHI I. Pressure transient analysis of dually fractured reservoirs[J]. Spe Journal, 1996, 1: 93-100.
[26] KAZEMI H. Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution[J]. Society of Petroleum Engineers Journal, 1969, 9: 451-462.
[27] DJATMIKO W, HANSAMUIT V. Pressure buildup analysis in karstified carbonate reservoir[J]. Journal of Petroleum Science and Engineering, 2010, 2: 23-41.
[28] SHI W Y, YAO Y D, CHENG S Q, et al. Pressure transient analysis of acid fracturing stimulated well in multilayered fractured carbonate reservoirs: a field case in Western Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106462.
[29] KUCHUK F J, BIRYUKOV D. Transient pressure test interpretation for continuously and discretely fractured reservoirs[J]. Peer Review, 2012, 13(1): 18-32.
[30] LUO L, CHENG S Q, LEE J. Characterization of refracture orientation in poorly propped fractured wells by pressure transient analysis: model, pitfall, and application[J]. Journal of Natural Gas Science and Engineering, 2020, 79: 103332.
[31] 万义钊, 刘曰武. 缝洞型油藏三维离散缝洞数值试井模型[J]. 力学学报, 2015, 47(6): 1000-1008.
[32] DU X, LI Q Y, LI P C, et al. A novel pressure and rate transient analysis model for fracture-caved carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109609.
[33] LI Q Y, DU X, TANG Q J, et al. A novel well test model for fractured vuggy carbonate reservoirs with the vertical bead-on-a-string structure[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107938.
[34] WEI C, CHENG S, CHEN G, et al. Parameters evaluation of fault-karst carbonate reservoirs with vertical beads-on-string structure based on bottom-hole pressure: case studies in Shunbei oilfield[J]. IFP Energies nouvelles, 2021, 76(1): 59-64.
[35] WEI C, CHENG S Q, SONG J Y, et al. Pressure transient analysis for wells drilled into vertical beads-on-string caves in fracture-caved carbonate reservoirs: field cases in Shunbei oilfield[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109280.
[36] 景海波, 黄维秋, 纪虹, 等. 基于数值模拟技术的油气扩散风洞实验相似准则数研究[J].常州大学学报(自然科学版), 2020, 32(4): 83-92.
[37] 郭文敏, 万永华, 赵炫皓. 多孔介质分形维数的两相渗吸数学模型研究[J]. 常州大学学报(自然科学版), 2020, 32(1): 85-92.
[38] VAN EVERDINGEN A F, HURST W. The application of the Laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology, 1949, 1(12): 305-324.
[39] STEHFEST H. Algorithm 368: numerical inversion of Laplace transforms D5[J]. Commun ACM, 1970, 13: 47-49.
[40] HE Y W, CHENG S Q, LI S, et al. A semianalytical methodology to diagnose the locations of underperforming hydraulic fractures through pressure-transient analysis in tight gas reservoir[J]. Spe Journal, 2017, 22: 924-939.
[41] QIN J Z, SONG J J, TANG Y, et al. Well applicability assessment based on fuzzy theory for CO2 sequestration in depleted gas reservoirs[J]. Renewable Energy, 2023, 206: 239-250.
[42] WANG Y, CHENG S Q, ZHANG F B, et al. Big data technique in the reservoir parameters' prediction and productivity evaluation: a field case in western South China Sea[J]. Gondwana Research, 2021, 96: 22-36.
[43] 汪洋, 程时清, 秦佳正, 等. 超低渗透油藏注水诱导动态裂缝开发理论及实践[J]. 中国科学: 技术科学, 2022, 52(4): 613-626.

备注/Memo

备注/Memo:
收稿日期: 2023-01-28。
基金项目: 2022年度教育部“春晖计划”合作科研资助项目(HZKY20220144); 常州大学基金资助项目(ZMF22020071); 常州市领军型创新人才引进培育资助项目(CQ20220120)。
作者简介: 史文洋(1991—), 男, 河南周口人, 博士, 讲师。E-mail: w.shi@cczu.edu.cn
更新日期/Last Update: 1900-01-01