参考文献/References:
[1] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
[2] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.
[3] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.
[4] 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部 “层控” 与 “断控” 型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469.
[5] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2):207-216.
[6] 漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135.
[7] 程晓军. 超深断溶体油藏油井见水特征及生产制度优化: 以塔里木盆地顺北油田Z井为例[J]. 新疆石油地质, 2021, 42(5): 554-558.
[8] 黎荣, 胡明毅, 潘仁芳, 等. 川中地区中二叠统断溶体发育特征及形成机制[J]. 中国石油勘探, 2019, 24(1): 105-114.
[9] 李一超, 杨飞, 徐天鑫, 等. 川西南井研地区灯影组断溶体形成机制与识别[J]. 断块油气田, 2020, 27(2): 193-197.
[10] 钟建华, 李阳, 袁向春, 等. 一种新的构造缝洞体系: 褶溶体[J]. 地质科学, 2021, 56(4): 1001-1014.
[11] 蒋廷学, 周珺, 贾文峰, 等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140-147.
[12] 刘宝增, 漆立新, 李宗杰, 等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4): 412-420.
[13] 王震, 文欢, 邓光校, 等. 塔河油田碳酸盐岩断溶体刻画技术研究与应用[J]. 石油物探, 2019, 58(1): 149-154.
[14] 常少英, 庄锡进, 邓兴梁, 等. 断溶体油藏高效井预测方法与应用效果: 以HLHT油田奥陶系潜山区为例[J]. 石油地球物理勘探, 2017, 52(S1): 199-206, 13.
[15] 李相文, 冯许魁, 刘永雷, 等. 塔中地区奥陶系走滑断裂体系解剖及其控储控藏特征分析[J]. 石油物探, 2018, 57(5): 764-774.
[16] 唐海, 何娟, 荣元帅, 等. 塔河断溶体油藏典型断溶体注水驱替规律及剩余油分布特征[J]. 油气地质与采收率, 2018, 25(3): 95-100.
[17] 吕艳萍, 罗君兰, 王炯, 等. 塔河油田典型碳酸盐岩断溶体发育模式[J]. 西安石油大学学报(自然科学版), 2021, 36(1): 20-27.
[18] 顾浩, 康志江, 尚根华, 等. 基于物质平衡的超深断溶体油藏弹性驱产能主控因素分析[J]. 油气地质与采收率, 2021, 28(4): 86-92.
[19] 顾浩, 尚根华, 李慧莉, 等. 基于井温的超深断溶体油藏油井动用深度计算[J]. 特种油气藏, 2021, 28(2): 57-62.
[20] 郑函庆, 丁心鲁, 刘学清, 等. 塔里木盆地碳酸盐岩缝洞型储层试井资料特征及KT1井储层缝洞组合关系认识[J]. 石油地质与工程, 2021, 35(4): 26-29, 37.
[21] BARENBLATT G I, ZHELTOV I, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks strata[J]. Journal of Applied Mathematics and Mechanics, 1960, 24: 1286-1303.
[22] WARREN J, ROOT P. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255.
[23] DE SWAAN A. Analytic solutions for determining naturally fractured reservoir properties by well testing[J]. Society of Petroleum Engineers Journal, 2013, 16(3): 117-122.
[24] DODDY A, IRAJ E. Triple-porosity systems for representing naturally fractured reservoirs[J]. SPE Formation Evaluation, 1986, 1(2): 113-127.
[25] AL-GHAMDI A, ERSHAGHI I. Pressure transient analysis of dually fractured reservoirs[J]. Spe Journal, 1996, 1: 93-100.
[26] KAZEMI H. Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution[J]. Society of Petroleum Engineers Journal, 1969, 9: 451-462.
[27] DJATMIKO W, HANSAMUIT V. Pressure buildup analysis in karstified carbonate reservoir[J]. Journal of Petroleum Science and Engineering, 2010, 2: 23-41.
[28] SHI W Y, YAO Y D, CHENG S Q, et al. Pressure transient analysis of acid fracturing stimulated well in multilayered fractured carbonate reservoirs: a field case in Western Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106462.
[29] KUCHUK F J, BIRYUKOV D. Transient pressure test interpretation for continuously and discretely fractured reservoirs[J]. Peer Review, 2012, 13(1): 18-32.
[30] LUO L, CHENG S Q, LEE J. Characterization of refracture orientation in poorly propped fractured wells by pressure transient analysis: model, pitfall, and application[J]. Journal of Natural Gas Science and Engineering, 2020, 79: 103332.
[31] 万义钊, 刘曰武. 缝洞型油藏三维离散缝洞数值试井模型[J]. 力学学报, 2015, 47(6): 1000-1008.
[32] DU X, LI Q Y, LI P C, et al. A novel pressure and rate transient analysis model for fracture-caved carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109609.
[33] LI Q Y, DU X, TANG Q J, et al. A novel well test model for fractured vuggy carbonate reservoirs with the vertical bead-on-a-string structure[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107938.
[34] WEI C, CHENG S, CHEN G, et al. Parameters evaluation of fault-karst carbonate reservoirs with vertical beads-on-string structure based on bottom-hole pressure: case studies in Shunbei oilfield[J]. IFP Energies nouvelles, 2021, 76(1): 59-64.
[35] WEI C, CHENG S Q, SONG J Y, et al. Pressure transient analysis for wells drilled into vertical beads-on-string caves in fracture-caved carbonate reservoirs: field cases in Shunbei oilfield[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109280.
[36] 景海波, 黄维秋, 纪虹, 等. 基于数值模拟技术的油气扩散风洞实验相似准则数研究[J].常州大学学报(自然科学版), 2020, 32(4): 83-92.
[37] 郭文敏, 万永华, 赵炫皓. 多孔介质分形维数的两相渗吸数学模型研究[J]. 常州大学学报(自然科学版), 2020, 32(1): 85-92.
[38] VAN EVERDINGEN A F, HURST W. The application of the Laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology, 1949, 1(12): 305-324.
[39] STEHFEST H. Algorithm 368: numerical inversion of Laplace transforms D5[J]. Commun ACM, 1970, 13: 47-49.
[40] HE Y W, CHENG S Q, LI S, et al. A semianalytical methodology to diagnose the locations of underperforming hydraulic fractures through pressure-transient analysis in tight gas reservoir[J]. Spe Journal, 2017, 22: 924-939.
[41] QIN J Z, SONG J J, TANG Y, et al. Well applicability assessment based on fuzzy theory for CO2 sequestration in depleted gas reservoirs[J]. Renewable Energy, 2023, 206: 239-250.
[42] WANG Y, CHENG S Q, ZHANG F B, et al. Big data technique in the reservoir parameters' prediction and productivity evaluation: a field case in western South China Sea[J]. Gondwana Research, 2021, 96: 22-36.
[43] 汪洋, 程时清, 秦佳正, 等. 超低渗透油藏注水诱导动态裂缝开发理论及实践[J]. 中国科学: 技术科学, 2022, 52(4): 613-626.