[1]郝宏达,侯吉瑞,郭文敏,等.强水窜油藏凝胶/CO2复合吞吐三维物理模拟[J].常州大学学报(自然科学版),2023,35(05):67-75.[doi:10.3969/j.issn.2095-0411.2023.05.009]
 HAO Hongda,HOU Jirui,GUO Wenmin,et al.3D physical simulation of gel combined CO2 huff-n-puff in a channeling oil reservoir[J].Journal of Changzhou University(Natural Science Edition),2023,35(05):67-75.[doi:10.3969/j.issn.2095-0411.2023.05.009]
点击复制

强水窜油藏凝胶/CO2复合吞吐三维物理模拟()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年05期
页码:
67-75
栏目:
石油与天然气工程
出版日期:
2023-09-28

文章信息/Info

Title:
3D physical simulation of gel combined CO2 huff-n-puff in a channeling oil reservoir
文章编号:
2095-0411(2023)05-0067-09
作者:
郝宏达1侯吉瑞2郭文敏1刘怀珠3
(1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.中国石油大学(北京)非常规油气科学技术研究院, 北京 102249; 3.中国石油冀东油田公司 钻采工艺研究院, 河北 唐山 063000)
Author(s):
HAO Hongda1 HOU Jirui2 GUO Wenmin1 LIU Huaizhu3
(1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; 2.Unconventional Petroleum Research Institute, China University of Petroleum(Beijing), Beijing 102249,China; 3.Drilling & Production Technology Research Institute, PetroChina Jidong Oilfield Company, Tangshan 063000,China)
关键词:
CO2吞吐 淀粉凝胶 稠油 采收率 三维物理模拟
Keywords:
CO2 huff-n-puff starch gel heavy oil oil recovery 3D physical simulation
分类号:
TE 39
DOI:
10.3969/j.issn.2095-0411.2023.05.009
文献标志码:
A
摘要:
针对华北油藏,选取淀粉凝胶在室内开展配方优选及性能评价,随后采用三维水窜模型开展凝胶/CO2复合吞吐室内物理模拟实验,并提出了通过凝胶/CO2复合吞吐提高采收率的方法。结果表明,优选的凝胶体系具有良好的注入性能,小剂量凝胶体系即可在水窜通道中形成I级刚性凝胶,其阻力系数仅为4.36,残余阻力系数高达604.70。三维物理模拟实验结果表明,凝胶/CO2复合吞吐可提高采收率11.36%,降低含水量至4%~18%。在淀粉凝胶封堵强窜通道后,CO2可有效置换近井地带剩余油,同时边水可动用基质内部剩余油,在CO2和边水的双重作用下,大幅度提高强水窜油藏采收率。
Abstract:
For Huabei Oilfield, starch gel is selected to carry out formulate optimization and performance evaluation in laboratory, and then 3D water channeling model was used to carry out indoor physical model experiment of gel/CO2 composite huff and puff, and the method of improving oil recovery through gel/CO2 composite huff and puff is proposed. The results show that the optimized starch gel has an excellent injectivity, and a rigid gel classified as I can formed within the strong channels using a small dose of gel. The resistance factor is only 4.36, and the residual resistance factor can reach 604.70. 3D experimental results show that the oil recovery of gel combined CO2 huff-n-puff can be enhanced by 11.36%, and the water cut can be dropped to 4%—18%. After the plugging of strong channels by starch gel, the oil remained at near-wellbore area can be extracted by CO2, and the oil remained at deep formation can be displaced by edge water. With the combined of CO2 extraction and edge-water driving, the oil recovery can be significantly enhanced in the strong channeling oil reservoir.

参考文献/References:

[1] ZHOU H M, CHANG X J, HAO J M, et al. Development technique and practice of horizontal wells for complex fault-block reservoirs in Jidong oil field[C]//International Oil & Gas Conference and Exhibition in China. Beijing: SPE, 2006.
[2] 辛春彦, 李福堂, 黄海龙, 等. 低渗透油藏注入水损害储层主控因素研究[J]. 常州大学学报(自然科学版), 2021, 33(5): 87-92.
[3] 马桂芝, 陈仁保, 王群一, 等. 冀东复杂断块油藏CO2吞吐典型井剖析[J]. 石油地质与工程, 2013, 27(5): 107-111, 150.
[4] 张娟, 周立发, 张晓辉, 等. 浅薄层稠油油藏水平井CO2吞吐效果[J]. 新疆石油地质, 2018, 39(4): 485-491.
[5] 佟卉, 苏程, 毛绍祺, 等. 油田用铬交联聚合物凝胶研究进展综述[J]. 化学工程师, 2021, 35(2): 43-47.
[6] SUN X D, BAI B J, LONG Y F, et al. A comprehensive review of hydrogel performance under CO2 conditions for conformance control[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106662.
[7] 刘楠楠, 胡彤, 唐伟, 等. 低矿化度水/月桂酰胺丙基羟磺酸甜菜碱复配溶液驱油技术研究[J]. 常州大学学报(自然科学版), 2022, 34(2): 74-80.
[8] 李粉丽, 侯吉瑞, 刘应辉, 等. 改性淀粉强凝胶堵剂的研制[J]. 大庆石油地质与开发, 2007, 26(2): 80-82.
[9] SINGH R, MAHTO V. Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery[J]. Petroleum Science, 2017, 14(4): 765-779.
[10] ZHU D Y, BAI B J, HOU J R. Polymer gel systems for water management in high-temperature petroleum reservoirs: a chemical review[J]. Energy & Fuels, 2017, 31(12): 13063-13087.
[11] 冷光耀, 侯吉瑞. 利用CT技术研究裂缝性油藏改性淀粉凝胶调堵液流转向[J]. 油田化学, 2016, 33(4): 629-632.
[12] SONG Z J, HOU J R, LIU X C, et al. Conformance control for CO2-EOR in naturally fractured low permeability oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 166: 225-234.
[13] ZHAO F L, WANG P, HUANG S J, et al. Performance and applicable limits of multi-stage gas channeling control system for CO2 flooding in ultra-low permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107336.
[14] 石立华, 王维波, 王成俊, 等. 基于裂缝径向流物理模型的CO2驱注入方式研究[J]. 特种油气藏, 2021, 28(3): 112-117.
[15] 唐孝芬, 刘玉章, 向问陶, 等. 交联聚合物冻胶调堵剂性能评价指标及方法[J]. 石油钻采工艺, 2004, 26(2): 49-53.
[16] DU Q J, HOU J, ZHAO F, et al. A new organic fiber composite gel as a plugging agent for assisting CO2 huff and puff in water channeling reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 179: 70-79.
[17] 孟祥海, 王楠, 吕鹏, 等. 酚醛凝胶调剖剂封堵及调剖效果研究[J]. 油田化学, 2021, 38(4): 642-646.
[18] 潘广明, 张彩旗, 刘东, 等. 海上稠油油藏弱凝胶调驱提高采收率技术[J]. 特种油气藏, 2018, 25(3): 140-143.
[19] LUO Q, TANG K, BAI L, et al. Development of in situ starch grafted copolymerized gels for conglomerate reservoir conformance control and oil recovery improvement[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110005.
[20] HAO H D, YUAN D Y, HOU J R, et al. Using starch graft copolymer gel to assist the CO2 huff-n-puff process for enhanced oil recovery in a water channeling reservoir[J]. RSC Advances, 2022, 12(31): 19990-20003.
[21] 陈哲, 徐鹏. 弱凝胶/预交联颗粒复合调驱室内评价[J]. 非常规油气, 2018, 5(5): 58-61.
[22] 郐婧文, 鞠野, 徐国瑞, 等. 中低渗高盐油藏聚合物弱凝胶渗流特性及机理分析[J]. 当代化工, 2022, 51(5): 1053-1056.

备注/Memo

备注/Memo:
收稿日期: 2023-03-23。
基金项目: 国家自然科学基金资助项目(5274046)。
作者简介: 郝宏达(1990—), 男, 黑龙江尚志人, 博士, 讲师。E-mail: haohongda90@126.com
更新日期/Last Update: 1900-01-01