[1]高 颖,刘伟强,李 毅,等.模拟叶片反射的光散射仿生膜光谱分析[J].常州大学学报(自然科学版),2023,35(06):11-18.[doi:10.3969/j.issn.2095-0411.2023.06.002]
 GAO Ying,LIU Weiqiang,LI Yi,et al.Spectral analysis of light scattering biomimetic film simulating leaf reflection[J].Journal of Changzhou University(Natural Science Edition),2023,35(06):11-18.[doi:10.3969/j.issn.2095-0411.2023.06.002]
点击复制

模拟叶片反射的光散射仿生膜光谱分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年06期
页码:
11-18
栏目:
材料科学与工程
出版日期:
2023-11-28

文章信息/Info

Title:
Spectral analysis of light scattering biomimetic film simulating leaf reflection
文章编号:
2095-0411(2023)06-0011-08
作者:
高 颖 刘伟强 李 毅 陈娅君 唐 波 陆蓓蓓 周海军
(常州大学 石油与天然气工程学院, 江苏 常州 213164)
Author(s):
GAO Ying LIU Weiqiang LI Yi CHEN Yajun TANG Bo LU Beibei ZHOU Haijun
(School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China)
关键词:
仿生膜 叶绿素 叶绿素铜钠盐 二氧化钛 反射率
Keywords:
biomimetic film chlorophyll sodium copper chlorophyllin TiO2 reflectance
分类号:
Q 43
DOI:
10.3969/j.issn.2095-0411.2023.06.002
文献标志码:
A
摘要:
为应对高光谱成像侦察,设计了2种模拟植物叶片反射谱的光散射膜并分别命名为TiO2/Chl和TiO2/SCC仿生膜。两类膜的基体均为亲水的聚乙烯醇/氯化锂薄膜,散射微粒均为二氧化钛(TiO2),色素分别为叶绿素(Chl)和叶绿素铜钠盐(SCC)。采用分光光度计分别测量了样品和桂花树叶片的反射率及桂花树叶片色素提取液、Chl和SCC溶液的吸光度。结果表明,在430~2 500 nm内,TiO2具有强散射特性,增强了基体膜的反射辐射。在TiO2的散射作用下,由于Chl和SCC具有与植物叶片色素相似的吸收特性,且基体膜含水,仿生膜反射谱均呈现与绿色叶片反射谱相似的4个基本特征,即“绿峰”“红边”“近红外高原”和水吸收带。TiO2/Chl和TiO2/SCC仿生膜的反射谱与桂花树叶片的相关系数分别为0.90和0.95。
Abstract:
To deal with hyperspectral imaging reconnaissance, two types of light scattering films simulating the reflection spectra of plant leaves were designed and named TiO2/Chl and TiO2/SCC biomimetic films, respectively. The substrates of the two types of the above films are both hydrophilic polyvinyl alcohol/lithium chloride films; the scattered particles are both titanium dioxide(TiO2); the pigments are chlorophyll(Chl)and sodium copper chlorophyllin(SCC), respectively. The reflectances of samples and an Osmanthus fragrans leaf, and the absorbances of solutions of pigment extracted from the Osmanthus fragrans leaf,Chl and SCC were measured by spectrophotometer. The results show that the reflected radiation of the substrate film is enhanced by TiO2 due to the strong scattering characteristics in the range of 430—2 500 nm; under the scattering action of TiO2, because Chl and SCC have absorption characteristics similar to plant leaf pigments, and the substrate film contains water, the reflection spectra of the biomimetic films show four basic characteristics similar to that of green plant leaves, namely “green peak”, “red edge”, “near-infrared plateau” and water absorption bands. The correlation coefficients between the reflection spectra of TiO2/Chl and TiO2/SCC biomimetic films and the Osmanthus fragrans leaf are 0.90 and 0.95, respectively.

参考文献/References:

[1] GAO Y, TANG B, JI G J, et al. A camouflage coating with similar solar spectrum reflectance to leaves based on polymeric inorganic composite[J]. Materials Research Express, 2021, 8(6): 066404.
[2] KNIPLING E B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation[J]. Remote Sensing of Environment, 1970, 1(3): 155-159.
[3] SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.
[4] MA Q L, ISHIMARU A, PHU P, et al. Transmission, reflection and depolarization of an optical wave for a single leaf[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(5): 865-872.
[5] MILLER J R, WU J Y, BOYER M G, et al. Seasonal patterns in leaf reflectance red-edge characteristics[J]. International Journal of Remote Sensing, 1991, 12(7): 1509-1523.
[6] GAO Y, TANG B, LU B B, et al. Investigation on the effects of water loss on the solar spectrum reflectance and transmittance of Osmanthus fragrans leaves based on optical experiment and prospect model[J]. RSC Advances, 2021, 11(59): 37268-37275.
[7] ZHANG Z, FU Y, LI H L, et al. Monitoring the leaf equivalent water thickness of kiwifruit in high temperature using leaf spectral reflectance[J]. Spectroscopy Letters, 2022, 55(10): 659-672.
[8] PALMER K F, WILLIAMS D. Optical properties of water in the near infrared[J]. Journal of the Optical Society of America, 1974, 64(8): 1107-1110.
[9] ZHAO D E, LIU S Y, YANG X F, et al. Research on camouflage recognition in simulated operational environment based on hyperspectral imaging technology[J]. Journal of Spectroscopy, 2021, 20(1): 1-9.
[10] MEHRIZI M K, MORTAZAVI S M, MALLAKPOUR S, et al. Effect of carbon black nanoparticles on reflective behavior of printed cotton/nylon fabrics in visible/near infrared regions[J]. Fibers and Polymers, 2012, 13(4): 501-506.
[11] 程刚, 陈宏书, 胡志毅, 等. 颜料填充硬质聚氨酯泡沫塑料隐身性能的研究[J]. 红外技术, 2009, 31(10): 614-618.
[12] ZHANG H, ZHANG J C. Near-infrared green camouflage of cotton fabrics using vat dyes[J]. Journal of the Textile Institute, 2008, 99(1): 83-88.
[13] 刘志明, 吴文健, 胡碧茹. 基于被子植物叶类器官的仿生伪装材料设计[J]. 中国科学, 2009, 39(1): 174-180.
[14] YANG Y J, LIU Z M, HU B R, et al. Bionic composite material simulating the optical spectra of plant leaves[J]. Journal of Bionic Engineering, 2010, 7(3): 43-49.
[15] QIN R, XU G Y, GUO L, et al. Preparation and characterization of a novel poly(urea-formaldehyde)microcapsules with similar reflectance spectrum to leaves in the UV-Vis-NIR region of 300—2 500 nm[J]. Materials Chemistry and Physics, 2012, 136(2/3): 737-743.
[16] 郭利, 徐国跃, 李澄, 等. 一种新型近红外伪装涂层的制备及光谱性能研究[J]. 红外技术, 2012, 34(10): 588-592.
[17] HU A R, LI M, ZHANG L P, et al. Polyurethane-based bionic material simulating the Vis-NIR spectrum and thermal infrared properties of vegetation[J]. RSC Advances, 2019, 9(71): 41438-41446.
[18] ECKHARDT U, GRIMM B, HÖRTENSTEINER S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Molecular Biology, 2004, 56(1): 1-14.
[19] 杨玉杰, 胡碧茹, 吴文健. 天然叶绿素的稳定化及伪装应用[J]. 功能材料, 2011, 42(S2): 374-376, 381.
[20] 赵彩霞, 柏祥, 邹国享, 等. 醇解度对聚乙烯醇水凝胶的形成及性能影响[J]. 常州大学学报(自然科学版), 2017, 29(3): 1-5.
[21] ZHANG L Z, WANG Y Y, WANG C L, et al. Synthesis and characterization of a PVA/LiCl blend membrane for air dehumidification[J]. Journal of Membrane Science, 2008, 308(1/2): 198-206.
[22] 卢东昱, 崔新图, 黄镜荣, 等. 叶绿素吸收光谱的观测[J]. 大学物理, 2006, 25(1): 50-53, 63.
[23] GORDON J, HARMAN S. A graduated cylinder colorimeter: an investigation of path length and the beer-lambert law[J]. Journal of Chemical Education, 2002, 79(5): 611-616.
[24] ALI J H, WANG W B, ZEVALLOS M, et al. Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues[J]. Technology in Cancer Research & Treatment, 2004, 3(5): 491-497.
[25] 曹爽, 韩冰, 朱建华, 等. 黄东海悬浮颗粒物质量比后向散射特性Mie理论模拟与实证分析[J]. 激光与光电子学进展, 2022, 59(13): 101-111.
[26] HUANG Z F, RUAN X L. Nanoparticle embedded double-layer coating for daytime radiative cooling[J]. International Journal of Heat and Mass Transfer, 2017, 104: 890-896.
[27] WANG F Q, WANG H, GONG D Y, et al. Radiative transfer analysis of semitransparent medium with particles having non-uniform size distribution by differential-integration method[J]. International Journal of Heat and Mass Transfer, 2019, 130: 342-355.
[28] RIO S, ANDRAUD C, DENIARD P, et al. Study of the influence of crystalline phases on optical characteristics of a glass-ceramic in the visible range via simulations by the four-flux method[J]. Journal of Non-Crystalline Solids, 2021, 551: 120446.
[29] GAO Y, YE H. Bionic membrane simulating solar spectrum reflection characteristics of natural leaf[J]. International Journal of Heat and Mass Transfer, 2017, 114: 115-124.
[30] CHEREPANOV D A, PETROVA A A, MAMEDOV M D, et al. Comparative absorption dynamics of the singlet excited states of chlorophylls a and d[J]. Biochemistry Biokhimiia, 2022, 87(10): 1179-1186.
[31] LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148: 350-382.
[32] 徐若涵, 杨再强, 申梦吟, 等. 苗期低温胁迫对“红颜”草莓叶绿素含量及冠层高光谱的影响[J]. 中国农业气象, 2022, 43(2): 148-158.
[33] 黄书娟, 叶诚, 杨娉娉, 等. 脐橙叶绿素a和b中稀土元素的检测[J]. 生物化工, 2016, 2(2): 1-3.
[34] 陈晨. 类胡萝卜素对叶绿素a荧光淬灭和吸收光谱的影响[D]. 长春: 吉林大学, 2019.
[35] 付天齐, 王向伟, 胡江华, 等. 叶绿素及其Cu, Zn衍生物的伪装性能研究[J]. 光电技术应用, 2015, 30(2): 33-36.
[36] 赵冬, 吴柯. 一种动态调整权值的交叉相关光谱匹配算法[J]. 地理空间信息, 2015, 13(4): 89-92, 14.

备注/Memo

备注/Memo:
收稿日期: 2023-04-29。
基金项目: 江苏省高等学校自然科学研究面上资助项目(22KJB470009); 江苏省研究生培养创新工程科研与实践创新计划资助项目(SJCX22_1439); 江苏省自然科学基金资助项目(BK20180957)。
作者简介: 高颖(1989—), 女, 天津人, 博士, 讲师。E-mail: gydyx@cczu.edu.cn
更新日期/Last Update: 1900-01-01