[1]李 楠,付文华,史明豪,等.NiCu/SiO2复合催化剂的制备及其苯甲醇脱氢性能[J].常州大学学报(自然科学版),2023,35(06):26-34.[doi:10.3969/j.issn.2095-0411.2023.06.004]
 LI Nan,FU Wenhua,SHI Minghao,et al.Preparation of NiCu/SiO2 catalyst and its performance for dehydrogenation of benzyl alcohol[J].Journal of Changzhou University(Natural Science Edition),2023,35(06):26-34.[doi:10.3969/j.issn.2095-0411.2023.06.004]
点击复制

NiCu/SiO2复合催化剂的制备及其苯甲醇脱氢性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年06期
页码:
26-34
栏目:
化学化工:多相催化专题
出版日期:
2023-11-28

文章信息/Info

Title:
Preparation of NiCu/SiO2 catalyst and its performance for dehydrogenation of benzyl alcohol
文章编号:
2095-0411(2023)06-0026-09
作者:
李 楠 付文华 史明豪 李正萍 马江权
(常州大学 石油化工学院, 江苏 常州 213164; 江苏省先进催化与绿色制造协同创新中心(常州大学), 江苏 常州 213164)
Author(s):
LI Nan FU Wenhua SHI Minghao LI Zhengping MA Jiangquan
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China)
关键词:
NiCu 苯甲醇 催化脱氢 苯甲醛
Keywords:
NiCu benzyl alcohol catalytic dehydrogenation benzaldehyde
分类号:
TQ 426.8
DOI:
10.3969/j.issn.2095-0411.2023.06.004
文献标志码:
A
摘要:
通过湿化学法制备了一系列微量Ni金属掺杂的NiCu/SiO2复合催化剂,并研究了其催化苯甲醇脱氢制苯甲醛的活性。同时,考察了Ni和Cu/SiO2质量配比以及反应温度对脱氢反应转化率、选择性的影响。结果表明,在Cu/SiO2催化剂中掺杂微量金属Ni能够大幅提高脱氢反应的活性,并且当反应温度为340 ℃,Ni和Cu/SiO2质量配比为1:200的NiCu/SiO2(1:200)催化剂表现出优异的苯甲醇转化率和苯甲醛选择性,分别达90.4%和84.3%。进一步,通过XRD,FT-IR,SEM,TEM,XPS和BET等技术对催化剂进行表征。结果证实高度均匀分散的微量Ni金属暴露出更多的Cu活性位点,同时微量的Ni掺杂有利于提高脱氢反应的转化率和选择性。
Abstract:
A series of Ni doped NiCu/SiO2 composite catalysts were prepared by wet chemical method, and their catalytic activities for dehydrogenation of benzyl alcohol to benzaldehyde were studied. At the same time, the effects of the mass ratio of Ni and Cu/SiO2 and reaction temperature on the conversion and selectivity of dehydrogenation were investigated. The results show that the activity of dehydrogenation reaction can be greatly improved by doping trace metal Ni into Cu/SiO2 catalyst, and when the reaction temperature is 340 ℃, the NiCu/SiO2(1:200)catalyst shows excellent benzyl alcohol conversion and benzaldehyde selectivity, reaching 90.4% and 84.3%, respectively. Furthermore, the catalysts were characterized by XRD, FT-IR, SEM, TEM, XPS, BET technologies. The results show that highly uniformly dispersed trace Ni metals expose more Cu active sites, and trace Ni doping is beneficial to improve the conversion rate and selectivity of dehydrogenation reaction.

参考文献/References:

[1] 江玲, 李煜杭, 王鑫洋, 等. Ce/ZSM-5气相催化氧化甲苯制备苯甲醛[J]. 精细化工中间体, 2021, 51(3): 52-58.
[2] 许杰, 文琳智, 郑欢, 等. 介孔氧化铈负载Pd催化苯甲醇选择氧化[J]. 常州大学学报(自然科学版), 2020, 32(6): 22-30.
[3] 单风祥. Au-CNT催化剂的制备及其催化苯甲醇氧化反应研究[D]. 大连: 大连理工大学, 2021.
[4] LYU J H, NIU L, SHEN F L, et al. In situ hydrogen peroxide production for selective oxidation of benzyl alcohol over a Pd@hierarchical titanium silicalite catalyst[J]. ACS Omega, 2020, 5(27): 16865-16874.
[5] LUONG G K T, KU Y. Selective oxidation of benzyl alcohol in the aqueous phase by TiO2-based photocatalysts: a review[J]. Chemical Engineering & Technology, 2021, 44(12): 2178-2190.
[6] NEVES P, VALENTE A A, LIN Z. Mild liquid phase oxidation of benzyl alcohol in the presence of microporous framework copper silicates[J]. European Journal of Inorganic Chemistry, 2020, 2020(13): 1172-1176.
[7] NOWICKA E, ALTHAHBAN S, LEAH T D, et al. Benzyl alcohol oxidation with Pd-Zn/TiO2: computational and experimental studies[J]. Science and Technology of Advanced Materials, 2019, 20(1): 367-378.
[8] WANG W Y, WU Y, LIU T Y, et al. Single co sites in ordered SiO2 channels for boosting nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(4): 2632-2638.
[9] ZHAO D, GUO K, HAN S L, et al. Controlling reaction-induced loss of active sites in ZnOx/silicalite-1 for durable nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(8): 4608-4617.
[10] YUAN Y, LOBO R F, XU B J. Ga2O2+2 stabilized by paired framework al atoms in MFI: a highly reactive site in nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(3): 1775-1783.
[11] GAO X F, XU W H, LI X, et al. Non-oxidative dehydrogenation of propane to propene over Pt-Sn/Al2O3 catalysts: identification of the nature of active site[J]. Chemical Engineering Journal, 2022, 443: 136393.
[12] SHAN J J, JANVELYAN N, LI H, et al. Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys[J]. Applied Catalysis B: Environmental, 2017, 205: 541-550.
[13] ZHANG H W, TAN H R, JAENICKE S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen[J]. Journal of Catalysis, 2020, 389: 19-28.
[14] LI Y N, WANG L, LOW J, et al. Integrating bimetallic AuPd nanocatalysts with a 2D aza-fused π-conjugated microporous polymer for light-driven benzyl alcohol oxidation[J]. Chinese Chemical Letters, 2020, 31(1): 231-234.
[15] LIU P, HENSEN E J M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde[J]. Journal of the American Chemical Society, 2013, 135(38): 14032-14035.
[16] KHALAKHAN I, VOROKHTA M, XIE X X, et al. On the interpretation of X-ray photoelectron spectra of Pt-Cu bimetallic alloys[J]. Journal of Electron Spectroscopy and Related Phenomena, 2021, 246: 147027.
[17] TAN B C, XIANG B, ZHANG S T, et al. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium[J]. Journal of Colloid and Interface Science, 2021, 582: 918-931.
[18] LI J Y, SUN X D, SUBHAN S, et al. Construction of novel Cu-based bimetal polycrystal@carbon catalyst prepared from bimetal HKUST-1 type MOFs(MOF-199s)for ultrafast reduction of 4-nitrophenol via interfacial synergistic catalysis[J]. Chemical Engineering Journal, 2022, 446(5): 137314.
[19] MIAO C X, ZHOU G L, CHEN S, et al. Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate[J]. Renewable Energy, 2020, 153: 1439-1454.
[20] LIU C S, WU G M. Interfacial structures of Si-SiO2 grown on B-and P-doped silicon and influences of 60 on them[J]. Radiation Effects and Defects in Solids, 1997, 143(1): 75-84.
[21] OKE J A, IDISI D O, MOLOI S J, et al. Structural, electronic, and electrical behaviour of MWCNTs: TiO2(SiO2)nanocomposites[J]. Journal of Electron Spectroscopy Related Phenomena, 2020, 245: 147002.
[22] XU G Q, SHEN X K. Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance[J]. Surface and Coatings Technology, 2019, 364: 180-186.
[23] DIEZ A S, PIQUERAS C M, ARAIZA D G, et al. Preparation and characterization of CuCeO2 catalytic materials forthe oxidation of benzyl alcohol to benzaldehyde in water[J]. Materials Chemistry and Physics, 2019, 232: 265-271.
[24] CHENG W J, LIU X T, LI N, et al. Boron-doped graphene as a metal-free catalyst for gas-phase oxidation of benzyl alcohol to benzaldehyde[J]. RSC Advances, 2018, 8(20): 11222-11229.
[25] DAI Y H, YAN X Q, TANG Y, et al. Low-temperature gas-phase oxidation of benzyl alcohol on mesoporous K-Cu-TiO2 through oxidative dehydrogenation[J]. ChemCatChem, 2012, 4(10): 1603-1610.
[26] LU M Y, HU X Y, HU Q X, et al. Selective oxidation of benzyl alcohol to benzaldehyde with air using ZIF-67 derived catalysts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127520.

相似文献/References:

[1]史凯迎,姜恒,宫红,等.甲烷磺酸铜催化合成丁酸节醋的性能[J].常州大学学报(自然科学版),2004,(04):27.
[2]许杰,文琳智,郑欢,等.介孔氧化铈负载Pd催化苯甲醇选择氧化[J].常州大学学报(自然科学版),2020,32(06):22.[doi:10.3969/j.issn.2095-0411.2020.06.004]
 XU Jie,WEN Linzhi,ZHENG Huan,et al.Selective Oxidation of Benzyl Alcohol Catalyzed by Pd Catalysts Supported on Mesoporous Ceria[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):22.[doi:10.3969/j.issn.2095-0411.2020.06.004]

备注/Memo

备注/Memo:
收稿日期: 2023-03-11。
基金项目: 常州市应用基础研究计划资助项目(CJ20220152)。
作者简介: 李楠(1994—), 女, 安徽宿州人, 博士, 讲师。通信联系人:马江权(1969—), E-mail: majiangquan@126.com
更新日期/Last Update: 1900-01-01