参考文献/References:
[1] 江玲, 李煜杭, 王鑫洋, 等. Ce/ZSM-5气相催化氧化甲苯制备苯甲醛[J]. 精细化工中间体, 2021, 51(3): 52-58.
[2] 许杰, 文琳智, 郑欢, 等. 介孔氧化铈负载Pd催化苯甲醇选择氧化[J]. 常州大学学报(自然科学版), 2020, 32(6): 22-30.
[3] 单风祥. Au-CNT催化剂的制备及其催化苯甲醇氧化反应研究[D]. 大连: 大连理工大学, 2021.
[4] LYU J H, NIU L, SHEN F L, et al. In situ hydrogen peroxide production for selective oxidation of benzyl alcohol over a Pd@hierarchical titanium silicalite catalyst[J]. ACS Omega, 2020, 5(27): 16865-16874.
[5] LUONG G K T, KU Y. Selective oxidation of benzyl alcohol in the aqueous phase by TiO2-based photocatalysts: a review[J]. Chemical Engineering & Technology, 2021, 44(12): 2178-2190.
[6] NEVES P, VALENTE A A, LIN Z. Mild liquid phase oxidation of benzyl alcohol in the presence of microporous framework copper silicates[J]. European Journal of Inorganic Chemistry, 2020, 2020(13): 1172-1176.
[7] NOWICKA E, ALTHAHBAN S, LEAH T D, et al. Benzyl alcohol oxidation with Pd-Zn/TiO2: computational and experimental studies[J]. Science and Technology of Advanced Materials, 2019, 20(1): 367-378.
[8] WANG W Y, WU Y, LIU T Y, et al. Single co sites in ordered SiO2 channels for boosting nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(4): 2632-2638.
[9] ZHAO D, GUO K, HAN S L, et al. Controlling reaction-induced loss of active sites in ZnOx/silicalite-1 for durable nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(8): 4608-4617.
[10] YUAN Y, LOBO R F, XU B J. Ga2O2+2 stabilized by paired framework al atoms in MFI: a highly reactive site in nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(3): 1775-1783.
[11] GAO X F, XU W H, LI X, et al. Non-oxidative dehydrogenation of propane to propene over Pt-Sn/Al2O3 catalysts: identification of the nature of active site[J]. Chemical Engineering Journal, 2022, 443: 136393.
[12] SHAN J J, JANVELYAN N, LI H, et al. Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys[J]. Applied Catalysis B: Environmental, 2017, 205: 541-550.
[13] ZHANG H W, TAN H R, JAENICKE S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen[J]. Journal of Catalysis, 2020, 389: 19-28.
[14] LI Y N, WANG L, LOW J, et al. Integrating bimetallic AuPd nanocatalysts with a 2D aza-fused π-conjugated microporous polymer for light-driven benzyl alcohol oxidation[J]. Chinese Chemical Letters, 2020, 31(1): 231-234.
[15] LIU P, HENSEN E J M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde[J]. Journal of the American Chemical Society, 2013, 135(38): 14032-14035.
[16] KHALAKHAN I, VOROKHTA M, XIE X X, et al. On the interpretation of X-ray photoelectron spectra of Pt-Cu bimetallic alloys[J]. Journal of Electron Spectroscopy and Related Phenomena, 2021, 246: 147027.
[17] TAN B C, XIANG B, ZHANG S T, et al. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium[J]. Journal of Colloid and Interface Science, 2021, 582: 918-931.
[18] LI J Y, SUN X D, SUBHAN S, et al. Construction of novel Cu-based bimetal polycrystal@carbon catalyst prepared from bimetal HKUST-1 type MOFs(MOF-199s)for ultrafast reduction of 4-nitrophenol via interfacial synergistic catalysis[J]. Chemical Engineering Journal, 2022, 446(5): 137314.
[19] MIAO C X, ZHOU G L, CHEN S, et al. Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate[J]. Renewable Energy, 2020, 153: 1439-1454.
[20] LIU C S, WU G M. Interfacial structures of Si-SiO2 grown on B-and P-doped silicon and influences of 60 on them[J]. Radiation Effects and Defects in Solids, 1997, 143(1): 75-84.
[21] OKE J A, IDISI D O, MOLOI S J, et al. Structural, electronic, and electrical behaviour of MWCNTs: TiO2(SiO2)nanocomposites[J]. Journal of Electron Spectroscopy Related Phenomena, 2020, 245: 147002.
[22] XU G Q, SHEN X K. Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance[J]. Surface and Coatings Technology, 2019, 364: 180-186.
[23] DIEZ A S, PIQUERAS C M, ARAIZA D G, et al. Preparation and characterization of CuCeO2 catalytic materials forthe oxidation of benzyl alcohol to benzaldehyde in water[J]. Materials Chemistry and Physics, 2019, 232: 265-271.
[24] CHENG W J, LIU X T, LI N, et al. Boron-doped graphene as a metal-free catalyst for gas-phase oxidation of benzyl alcohol to benzaldehyde[J]. RSC Advances, 2018, 8(20): 11222-11229.
[25] DAI Y H, YAN X Q, TANG Y, et al. Low-temperature gas-phase oxidation of benzyl alcohol on mesoporous K-Cu-TiO2 through oxidative dehydrogenation[J]. ChemCatChem, 2012, 4(10): 1603-1610.
[26] LU M Y, HU X Y, HU Q X, et al. Selective oxidation of benzyl alcohol to benzaldehyde with air using ZIF-67 derived catalysts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127520.