参考文献/References:
[1] DE ANDRADE R O, BARBOSA L C M, DE SOUZA B R, et al. Study of the influence of initiator content in the polymerization reaction of a thermoplastic liquid resin for advanced composite manufacturing[J]. Advances in Polymer Technology, 2018, 37(8): 3579-3587.
[2] DE ANDRADE R O, DE SOUZA B R, MIRANDA B L C, et al. Thermal, rheological, and dielectric analyses of the polymerization reaction of a liquid thermoplastic resin for infusion manufacturing of composite materials[J]. Polymer Testing, 2018, 71: 32-37.
[3] BHUDOLIA S K, PERROTE Y P, JOSHI S C. Optimizing polymer infusion process for thin ply textile composites with novel matrix system[J]. Materials, 2017, 10(3): 293-298.
[4] MURRAY R E, PENUMADU D, COUSINS D, et al. Manufacturing and flexural characterization of infusion-reacted thermoplastic wind turbine blade subcomponents[J]. Applied Composite Materials, 2019, 26(3): 945-961.
[5] MURDY P, HUGHES S. Investigating core gaps and the development of subcomponent validation methods for wind turbine blades[C]//Proceedings of the AIAA Scitech 2020 Forum. Virginia: AIAA, 2020.
[6] MURRAY R E, JENNE S, SNOWBERG D, et al. Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade[J]. Renewable Energy, 2019, 131: 111-119.
[7] NASH N, SIREROL C B, MANOLAKIS I, et al. Thermoplastic infusible resin systems: candidates for the marine sector[J]. Composite Materials, 2018, 1(6): 11-19.
[8] NASH N H, PORTELA A, BACHOUR-SIREROL C I, et al. Effect of environmental conditioning on the properties of thermosetting- and thermoplastic-matrix composite materials by resin infusion for marine applications[J]. Composites Part B: Engineering, 2019, 177: 107271.
[9] ARKEMA F. Elium 150 Technical Datasheet[EB/OL].(2018-3-20)[2022-03-20]. https://www.arkema-americas.com/en/products/product-portal/range-viewer/Elium-resins-for-composites.
[10] KINVI-DOSSOU G, MATADI B R, BONFOH N, et al. Innovative acrylic thermoplastic composites versus conventional composites: improving the impact performances[J]. Composite Structures, 2019, 217: 1-13.
[11] KINVI-DOSSOU G, MATADI B R, BONFOH N, et al. A numerical homogenization of e-glass/acrylic woven composite laminates: application to low velocity impact[J]. Composite Structures, 2018, 200: 540-554.
[12] BHUDOLIA S K, JOSHI S C, BERT A, et al. Energy characteristics and failure mechanisms for textile spreadtow thin ply thermoplastic composites under low-velocity impact[J]. Fibers and Polymers, 2019, 20(8): 1716-1725.
[13] BARBOSA L C M, SANTOS M, OLIVEIRA T L, et al. Effects of moisture absorption on mechanical and viscoelastic properties in liquid thermoplastic resin/carbon fiber composites[J]. Polymer Engineering & Science, 2019, 59(11): 2185-2194.
[14] CHILALI A, ZOUARI W, ASSARAR M, et al. Effect of water ageing on the load-unload cyclic behaviour of flax fibre-reinforced thermoplastic and thermosetting composites[J]. Composite Structures, 2018, 183: 309-319.
[15] BHUDOLIA S K, GOHEL G, FAI L K, et al. Investigation on ultrasonic welding attributes of novel carbon/elium composites[J]. Materials, 2020, 13(5): 1117.
[16] BHUDOLIA S K, GOHEL G, KANTIPUDI J, et al. Ultrasonic welding of novel carbon/elium thermoplastic composites with flat and integrated energy directors: lap shear characterisation and fractographic investigation[J]. Materials, 2020, 13(7): 1634.
[17] COUSINS D S, SUZUKI Y, MURRAY R E, et al. Recycling glassfiber thermoplastic composites from wind turbine blades[J]. Journal of Cleaner Production, 2019, 209: 1252-1263.
[18] BARBOSA L C M, BORTOLUZZI D B, ANCELOTTI A C. Analysis of fracture toughness in mode II and fractographic study of composites based on Elium 150 thermoplastic matrix[J]. Composites Part B: Engineering, 2019, 175: 107082.
[19] PINI T, CAIMMI F, BRIATICO-VANGOSA F, et al. Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins[J]. Engineering Fracture Mechanics, 2017, 184: 51-58.
[20] SHANMUGAM L, KAZEMI M E, RAO Z Q, et al. Enhanced Mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes[J]. Composites Part B: Engineering, 2019, 178: 107450.
[21] HAN N, BARAN I, ZANJANI J S M, et al. Experimental and computational analysis of the polymerization overheating in thick glass/Elium acrylic thermoplastic resin composites[J]. Composites Part B: Engineering, 2020, 202: 108430.
[22] SUZUKI Y, COUSINS D, WASSGREN J, et al. Kinetics and temperature evolution during the bulk polymerization of methyl methacrylate for vacuum-assisted resin transfermolding[J]. Composites Part A: Applied Science and Manufacturing, 2018, 104: 60-67.
[23] MUTHURAJ R, GROHENS Y, SEANTIER B. Mechanical and thermal insulation properties of elium acrylic resin/cellulose nanofiber based composite aerogels[J]. Nano-Structures & Nano-Objects, 2017, 12: 68-76.
[24] 杜志龙, 高振江, 张世湘. 气体射流冲击对流换热系数试验研究[J]. 农业工程学报, 2006, 22(S2): 1-4.
[25] NIELSEN M. Prediction of process induced shape distortions and residual stresses in largefibre reinforced composite laminates: with application to wind turbine blades[D]. Denmark: Technical University of Denmark, 2013.
[26] REN W W, SHU C, YANG W M. An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions[J]. International Journal of Heat and Mass Transfer, 2013, 64: 694-705.
[27] 陈祥宝, 邢丽英, 周正刚. 树脂基复合材料制造过程温度变化模拟研究[J]. 航空材料学报, 2009, 29(2): 61-65.
[28] 蔡晋, 董如林, 何越江, 等. 凹凸棒土的表面改性及其在不饱和聚酯树脂中的应用[J]. 常州大学学报(自然科学版), 2014, 26(2): 14-17.
[29] 李君, 姚学锋, 刘应华, 等. 复合材料固化过程中温度及应变场分布的解析解[J]. 清华大学学报(自然科学版), 2009, 49(5): 767-771.