[1]韩 宁,赵 聪,安鲁陵,等.Elium热塑性树脂固化温度场分布研究[J].常州大学学报(自然科学版),2023,35(06):58-64.[doi:10.3969/j.issn.2095-0411.2023.06.008]
 HAN Ning,ZHAO Cong,AN Luling,et al.Research of curing temperature field distribution on Elium thermoplastic resin[J].Journal of Changzhou University(Natural Science Edition),2023,35(06):58-64.[doi:10.3969/j.issn.2095-0411.2023.06.008]
点击复制

Elium热塑性树脂固化温度场分布研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年06期
页码:
58-64
栏目:
机械制造及其自动化
出版日期:
2023-11-28

文章信息/Info

Title:
Research of curing temperature field distribution on Elium thermoplastic resin
文章编号:
2095-0411(2023)06-0058-07
作者:
韩 宁1 赵 聪2 安鲁陵2 张 伟1 樊龙欣1
(1.常州大学 机械与轨道交通学院, 江苏 常州 213164; 2.南京航空航天大学 机电学院, 江苏 南京 210016)
Author(s):
HAN Ning1 ZHAO Cong2 AN Luling2 ZHANG Wei1 FAN Longxin1
(1.School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; 2.College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
关键词:
热塑性树脂 真空辅助注入成型(VARTM) 热化学模型 温度场
Keywords:
thermoplastic resin vacuum assisted resin transfer molding(VARTM) thermochemical modeling temperature field
分类号:
V 258
DOI:
10.3969/j.issn.2095-0411.2023.06.008
文献标志码:
A
摘要:
为了准确地预测Elium树脂的放热性能,基于瞬态非线性热传导方程的树脂固化模型,利用Abaqus仿真软件,建立了Elium树脂固化有限元模型,并对不同厚度Elium树脂的固化过程进行模拟和实验验证。结果表明固化温度的模拟计算结果与实验结果一致,固化峰值温度随着树脂厚度的增加呈现非线性增加趋势,当固化峰值温度接近100 ℃时,树脂中产生气泡,为优化Elium复合材料成形工艺提供了理论依据。
Abstract:
In this paper, the curing process of Elium resin of various thicknesses was simulated and experimentally verified using Abaqus simulation software. This was done in order to accurately predict the exothermic behavior of Elium resin. A finite element model of Elium resin curing was developed based on the transient non-linear heat transfer equation of the resin curing model. The findings demonstrate that the simulation results for the curing temperature agree with the experimental findings, and the peak curing temperature exhibits a non-linear increasing trend as resin thickness increases. When the peak curing temperature approaches 100 ℃, resin bubbles are produced, providing a theoretical foundation for optimising the Elium composite curing process.

参考文献/References:

[1] DE ANDRADE R O, BARBOSA L C M, DE SOUZA B R, et al. Study of the influence of initiator content in the polymerization reaction of a thermoplastic liquid resin for advanced composite manufacturing[J]. Advances in Polymer Technology, 2018, 37(8): 3579-3587.
[2] DE ANDRADE R O, DE SOUZA B R, MIRANDA B L C, et al. Thermal, rheological, and dielectric analyses of the polymerization reaction of a liquid thermoplastic resin for infusion manufacturing of composite materials[J]. Polymer Testing, 2018, 71: 32-37.
[3] BHUDOLIA S K, PERROTE Y P, JOSHI S C. Optimizing polymer infusion process for thin ply textile composites with novel matrix system[J]. Materials, 2017, 10(3): 293-298.
[4] MURRAY R E, PENUMADU D, COUSINS D, et al. Manufacturing and flexural characterization of infusion-reacted thermoplastic wind turbine blade subcomponents[J]. Applied Composite Materials, 2019, 26(3): 945-961.
[5] MURDY P, HUGHES S. Investigating core gaps and the development of subcomponent validation methods for wind turbine blades[C]//Proceedings of the AIAA Scitech 2020 Forum. Virginia: AIAA, 2020.
[6] MURRAY R E, JENNE S, SNOWBERG D, et al. Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade[J]. Renewable Energy, 2019, 131: 111-119.
[7] NASH N, SIREROL C B, MANOLAKIS I, et al. Thermoplastic infusible resin systems: candidates for the marine sector[J]. Composite Materials, 2018, 1(6): 11-19.
[8] NASH N H, PORTELA A, BACHOUR-SIREROL C I, et al. Effect of environmental conditioning on the properties of thermosetting- and thermoplastic-matrix composite materials by resin infusion for marine applications[J]. Composites Part B: Engineering, 2019, 177: 107271.
[9] ARKEMA F. Elium 150 Technical Datasheet[EB/OL].(2018-3-20)[2022-03-20]. https://www.arkema-americas.com/en/products/product-portal/range-viewer/Elium-resins-for-composites.
[10] KINVI-DOSSOU G, MATADI B R, BONFOH N, et al. Innovative acrylic thermoplastic composites versus conventional composites: improving the impact performances[J]. Composite Structures, 2019, 217: 1-13.
[11] KINVI-DOSSOU G, MATADI B R, BONFOH N, et al. A numerical homogenization of e-glass/acrylic woven composite laminates: application to low velocity impact[J]. Composite Structures, 2018, 200: 540-554.
[12] BHUDOLIA S K, JOSHI S C, BERT A, et al. Energy characteristics and failure mechanisms for textile spreadtow thin ply thermoplastic composites under low-velocity impact[J]. Fibers and Polymers, 2019, 20(8): 1716-1725.
[13] BARBOSA L C M, SANTOS M, OLIVEIRA T L, et al. Effects of moisture absorption on mechanical and viscoelastic properties in liquid thermoplastic resin/carbon fiber composites[J]. Polymer Engineering & Science, 2019, 59(11): 2185-2194.
[14] CHILALI A, ZOUARI W, ASSARAR M, et al. Effect of water ageing on the load-unload cyclic behaviour of flax fibre-reinforced thermoplastic and thermosetting composites[J]. Composite Structures, 2018, 183: 309-319.
[15] BHUDOLIA S K, GOHEL G, FAI L K, et al. Investigation on ultrasonic welding attributes of novel carbon/elium composites[J]. Materials, 2020, 13(5): 1117.
[16] BHUDOLIA S K, GOHEL G, KANTIPUDI J, et al. Ultrasonic welding of novel carbon/elium thermoplastic composites with flat and integrated energy directors: lap shear characterisation and fractographic investigation[J]. Materials, 2020, 13(7): 1634.
[17] COUSINS D S, SUZUKI Y, MURRAY R E, et al. Recycling glassfiber thermoplastic composites from wind turbine blades[J]. Journal of Cleaner Production, 2019, 209: 1252-1263.
[18] BARBOSA L C M, BORTOLUZZI D B, ANCELOTTI A C. Analysis of fracture toughness in mode II and fractographic study of composites based on Elium 150 thermoplastic matrix[J]. Composites Part B: Engineering, 2019, 175: 107082.
[19] PINI T, CAIMMI F, BRIATICO-VANGOSA F, et al. Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins[J]. Engineering Fracture Mechanics, 2017, 184: 51-58.
[20] SHANMUGAM L, KAZEMI M E, RAO Z Q, et al. Enhanced Mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes[J]. Composites Part B: Engineering, 2019, 178: 107450.
[21] HAN N, BARAN I, ZANJANI J S M, et al. Experimental and computational analysis of the polymerization overheating in thick glass/Elium acrylic thermoplastic resin composites[J]. Composites Part B: Engineering, 2020, 202: 108430.
[22] SUZUKI Y, COUSINS D, WASSGREN J, et al. Kinetics and temperature evolution during the bulk polymerization of methyl methacrylate for vacuum-assisted resin transfermolding[J]. Composites Part A: Applied Science and Manufacturing, 2018, 104: 60-67.
[23] MUTHURAJ R, GROHENS Y, SEANTIER B. Mechanical and thermal insulation properties of elium acrylic resin/cellulose nanofiber based composite aerogels[J]. Nano-Structures & Nano-Objects, 2017, 12: 68-76.
[24] 杜志龙, 高振江, 张世湘. 气体射流冲击对流换热系数试验研究[J]. 农业工程学报, 2006, 22(S2): 1-4.
[25] NIELSEN M. Prediction of process induced shape distortions and residual stresses in largefibre reinforced composite laminates: with application to wind turbine blades[D]. Denmark: Technical University of Denmark, 2013.
[26] REN W W, SHU C, YANG W M. An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions[J]. International Journal of Heat and Mass Transfer, 2013, 64: 694-705.
[27] 陈祥宝, 邢丽英, 周正刚. 树脂基复合材料制造过程温度变化模拟研究[J]. 航空材料学报, 2009, 29(2): 61-65.
[28] 蔡晋, 董如林, 何越江, 等. 凹凸棒土的表面改性及其在不饱和聚酯树脂中的应用[J]. 常州大学学报(自然科学版), 2014, 26(2): 14-17.
[29] 李君, 姚学锋, 刘应华, 等. 复合材料固化过程中温度及应变场分布的解析解[J]. 清华大学学报(自然科学版), 2009, 49(5): 767-771.

备注/Memo

备注/Memo:
收稿日期: 2023-04-19。
基金项目: 韩宁(1987—), 女, 山西宁武人, 博士, 讲师。E-mail: hanning@cczu.edu.cn
更新日期/Last Update: 1900-01-01