参考文献/References:
[1] 肖建庄, 张航华, 唐宇翔, 等. 废弃混凝土再生原理与再生混凝土基本问题[J]. 科学通报, 2023, 68(5): 510-523.
[2] 曹芙波, 邵剑涛, 王晨霞, 等. 废弃混凝土再利用技术性能研究[J]. 混凝土, 2020, 21(9): 101-103.
[3] DE BRITO J, FERREIRA J, PACHECO J, et al. Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete[J]. Journal of Building Engineering, 2016, 6(3): 1-16.
[4] EVANGELISTA L, GUEDES M, DE BRITO J, et al. Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste[J]. Construction and Building Materials, 2015, 86: 178-188.
[5] 刘恩铭, 林明强, 谢群. 再生粗骨料混凝土抗冻性能研究进展[J]. 硅酸盐通报, 2022, 41(9): 2963-2978.
[6] 杨瑛, 王倩, 胡箫箫, 等. 再生混凝土在城市更新项目中的应用及优化方法[J]. 混凝土, 2023, 23(1): 169-172, 177.
[7] 李冬霞, 谷伟, 阮雪琴, 等. 建筑废料再生混凝土的抗冻融耐久性研究[J]. 混凝土, 2022, 21(11): 160-163.
[8] EVANGELISTA L, DE BRITO J. Concrete with fine recycled aggregates: a review[J]. European Journal of Environmental and Civil Engineering, 2014, 18(2): 129-172.
[9] SIM J, PARK C. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate[J]. Waste Management, 2011, 31(11): 2352-2360.
[10] 王建刚, 曾波, 唐飞, 等. 不同类型再生细骨料混凝土力学性能对比研究[J]. 混凝土, 2022, 21(4): 81-85.
[11] 李战国, 纪文军, 张浩, 等. 含砖再生细骨料的性能及其胶砂性能的研究[J]. 混凝土, 2022, 21(4): 110-115.
[12] NENO C, DE BRITO J, VEIGA R. Using fine recycled concrete aggregate for mortar production[J]. Materials Research, 2013, 17(1): 168-177.
[13] GAYARRE F, BOADELLA Í, PÉREZ C, et al. Influence of the ceramic recycled agreggates in the masonry mortars properties[J]. Construction and Building Materials, 2017, 132: 457-461.
[14] KAN D Y, LIU G F, CHEN Z F, et al. Mechanical properties and microcosmic mechanism of multi-walled carbon nanotubes reinforced ultra-high strength concrete[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 31(2): 157-167.
[15] LIU G F, KAN D Y, CAO S C, et al. Effect of multi-walled carbon nanotube on reactive powder concrete(RPC)performance in sulfate dry-wet cycling environment[J]. Construction and Building Materials, 2022, 342: 128075.
[16] 刘桂凤, 朱鼎, 陈正发, 等. 碳纳米管活性粉末混凝土力学性能试验研究[J]. 混凝土与水泥制品, 2021, 17(8): 5-9.
[17] LIU G F, ZHANG H D, LIU J P, et al. Experimental study on the salt freezing durability of multi-walled carbon nanotube ultra-high-performance concrete[J]. Materials, 2022, 15(9): 3188.
[18] XIAO J Z, ZOU S, DING T, et al. Fiber-reinforced mortar with 100% recycled fine aggregates: a cleaner perspective on 3D printing[J]. Journal of Cleaner Production, 2021, 319: 128720.
[19] LI C, MIAO L C, YOU Q, et al. Effects of viscosity modifying admixture(VMA)on workability and compressive strength of structural EPS concrete[J]. Construction and Building Materials, 2018, 175: 342-350.
[20] WENG L, WU Z J, ZHANG S L, et al. Real-time characterization of the grouting diffusion process in fractured sandstone based on the low-field nuclear magnetic resonance technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105060.
[21] LIU K N, WANG S L, QUAN X Y, et al. Study on the mechanical properties and microstructure of fiber reinforced metakaolin-based recycled aggregate concrete[J]. Construction and Building Materials, 2021, 294: 123554.
[22] FRIAS M, CABRERA J. Pore size distribution and degree of hydration of metakaolin-cement pastes[J]. Cement and Concrete Research, 2000, 30(4): 561-569.
[23] LIU L, HE Z, CAI X H, et al. Application of low-field NMR to the pore structure of concrete[J]. Applied Magnetic Resonance, 2021, 52(1): 15-31.