参考文献/References:
[1] LOWKE D, DINI E, PERROT A, et al. Particle-bed 3D printing in concrete construction possibilities and challenges[J]. Cement and Concrete Research, 2018, 112: 50-65.
[2] ZHANG C, NERELLA V N, KRISHNA A, et al. Mix design concepts for 3D printable concrete: a review[J]. Cement and Concrete Composites, 2021, 122: 104155.
[3] 汤寄予, 张亚可, 高丹盈, 等. 3D打印混凝土研究现状及前景展望[J]. 河南大学学报(自然科学版), 2022, 52(6): 734-744.
[4] JI G C, XIAO J Z, ZHI P, et al. Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates[J]. Construction and Building Materials, 2022, 325: 126740.
[5] LIU H W, LIU C, BAI G L, et al. Influence of pore defects on the hardened properties of 3D printed concrete with coarse aggregate[J]. Additive Manufacturing, 2022, 55: 102843.
[6] WANG X G, JIA L T, JIA Z J, et al. Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process[J]. Journal of Building Engineering, 2022, 56: 104745.
[7] 刘化威, 刘超, 白国良, 等. 基于孔结构缺陷的3D打印粗骨料混凝土力学性能试验研究[J]. 土木工程学报, 2022, 55(12): 54-64.
[8] LIU C, CHEN Y N, ZHANG Z D, et al. Study of the influence of sand on rheological properties, bubble features and buildability of fresh foamed concrete for 3D printing[J]. Construction and Building Materials, 2022, 356: 129292.
[9] SINGH A, LIU Q, XIAO J Z, et al. Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction[J]. Construction and Building Materials, 2022, 323: 126616.
[10] YU S W, DU H J, SANJAYAN J. Aggregate-bed 3D concrete printing with cement paste binder[J]. Cement and Concrete Research, 2020, 136: 106169.
[11] 吕奇峰, 辛格, 朱平华, 等. 一种3D打印透水混凝土结构及其制备方法: CN114434590A[P]. 2022-05-06.
[12] HAO J H, LI Y J, LIU Y, et al. Jamming in granular shear flows of frictional, polydisperse cylindrical particles[J]. Advanced Powder Technology, 2021, 32(10): 3746-3759.
[13] SUN H L, XU S L, PAN X D, et al. Investigating the jamming of particles in a three-dimensional fluid-driven flow via coupled CFD-DEM simulations[J]. International Journal of Multiphase Flow, 2019, 114: 140-153.
[14] 封金财, 李涛, 刘文影. 骨料掺量对硅气凝胶砂浆性能的实验研究[J]. 常州大学学报(自然科学版), 2019, 31(2): 88-92.
[15] LIU H R, JIA F G, XIAO Y W, et al. Numerical analysis of the effect of the contraction rate of the curved hopper on flow characteristics of the silo discharge[J]. Powder Technology, 2019, 356: 858-870.
[16] LIU H R, HAN Y L, JIA F G, et al. An experimental investigation on jamming and critical orifice size in the discharge of a two-dimensional silo with curved hopper[J]. Advanced Powder Technology, 2021, 32(1): 88-98.
[17] ZHANG Y X, JIA F G, ZENG Y, et al. DEM study in the critical height of flow mechanism transition in a conical silo[J]. Powder Technology, 2018, 331: 98-106.
[18] MEHDIZAD M, FULLARD L, GALVOSAS P, et al. Quantitative measurements of flow dynamics in 3D hoppers using MRI[J]. Powder Technology, 2021, 392: 69-80.
[19] ZHAO Y, CHEW J. Effect of lognormal particle size distributions of non-spherical particles on hopper discharge characteristics[J]. Chemical Engineering Research and Design, 2020, 163: 230-240.
[20] FENG W Y, HAN Y L, CHEN P Y, et al. Effect of eccentricity on the particle flow characteristics in a double-orifice silo[J]. Powder Technology, 2023, 421: 118413.
[21] CHEN F Y, XIA Y D, KLINGER J, et al. Hopper discharge flow dynamics of milled pine and prediction of process upsets using the discrete element method[J]. Powder Technology, 2023, 415: 118165.
[22] LYU Q F, CHEN A G, JIA J, et al. Fluids flow in granular aggregate packings reconstructed by high-energy X-ray computed tomography and lattice Boltzmann method[J]. Computers & Fluids, 2023, 253: 105787.
[23] HUANG X J, ZHENG Q J, LIU D D, et al. A design method of hopper shape optimization with improved mass flow pattern and reduced particle segregation[J]. Chemical Engineering Science, 2022, 253: 117579.
[24] XU S L, SUN H L, CAI Y Q, et al. Studying the orifice jamming of a polydispersed particle system via coupled CFD-DEM simulations[J]. Powder Technology, 2020, 368: 308-322.
[25] FAN J H, LUU L H, PHILIPPE P, et al. Discharge rate characterization for submerged grains flowing through a hopper using DEM-LBM simulations[J]. Powder Technology, 2022, 404: 117421.
[26] 麻礼东, 杨光辉, 张晟, 等. 三维漏斗中颗粒物质堵塞问题的数值实验研究[J]. 物理学报, 2018, 67(4): 132-137.
[27] ZHAO Y, COCCO R A, YANG S L, et al. DEM study on the effect of particle-size distribution on jamming in a 3D conical hopper[J]. AIChE Journal, 2019, 65(2): 512-519.
[28] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
[29] HE S D, LI Y R, AYDIN A. A comparative study of UDEC simulations of an unsupported rock tunnel[J]. Tunnelling and Underground Space Technology, 2018, 72: 242-249.
[30] XU F, LI X Y, XIONG Q Y, et al. Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: from experimental studies to PFC 3D simulations[J]. Construction and Building Materials, 2022, 354: 129222.
[31] BERGER R, KLOSS C, KOHLMEYER A, et al. Hybrid parallelization of the LIGGGHTS open-source DEM code[J]. Powder Technology, 2015, 278: 234-247.
[32] WEI H, ZHAO Y H, ZHANG J, et al. LIGGGHTS and EDEM application on charging system of iron making blast furnace[J]. Advanced Powder Technology, 2017, 28(10): 2482-2487.
[33] YU Y W, SAXÉN H. Experimental and DEM study of segregation of ternary size particles in a blast furnace top bunker model[J]. Chemical Engineering Science, 2010, 65(18): 5237-5250.
[34] 吕奇峰, 戴鹏飞, 吴恒. 一种自动化铺洒粗骨料的漏斗: CN217970850U[P]. 2022-12-06.