[1]吕奇峰,吴 恒,戴鹏飞.3D打印混凝土骨料铺洒漏斗的防堵塞设计[J].常州大学学报(自然科学版),2023,35(06):73-81.[doi:10.3969/j.issn.2095-0411.2023.06.010]
 LYU Qifeng,WU Heng,DAI Pengfei.Anti-jamming design of aggregate-spreading hopper used in 3D concrete printing[J].Journal of Changzhou University(Natural Science Edition),2023,35(06):73-81.[doi:10.3969/j.issn.2095-0411.2023.06.010]
点击复制

3D打印混凝土骨料铺洒漏斗的防堵塞设计()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年06期
页码:
73-81
栏目:
土木工程:混凝土骨科专题
出版日期:
2023-11-28

文章信息/Info

Title:
Anti-jamming design of aggregate-spreading hopper used in 3D concrete printing
文章编号:
2095-0411(2023)06-0073-09
作者:
吕奇峰 吴 恒 戴鹏飞
(常州大学 城市建设学院, 江苏 常州 213164)
Author(s):
LYU Qifeng WU Heng DAI Pengfei
(School of Urban Construction, Changzhou University, Changzhou 213164, China)
关键词:
3D打印 混凝土 骨料 漏斗 堵塞
Keywords:
3D printing concrete aggregate hopper jamming
分类号:
TU 528.59
DOI:
10.3969/j.issn.2095-0411.2023.06.010
文献标志码:
A
摘要:
在使用骨料床3D打印混凝土过程中,为防止骨料铺洒漏斗堵塞,文章采用离散元计算程序EDEM研究了骨料在漏斗中的运动和堵塞规律。计算考虑了圆台(CTC)、正棱台(FSP)、斜棱台(FOP)3种不同形状的漏斗,并以骨料尺寸、骨料数目和漏斗高度为计算变量,得到81组不同的计算结果。结果显示,在相同漏斗特征尺寸下,斜棱台和正棱台漏斗容积相同,但比圆台漏斗容积大。在铺洒骨料时,圆台漏斗堵塞概率最大,正棱台漏斗次之,斜棱台漏斗最小。相比骨料数目和漏斗高度,骨料尺寸对漏斗的堵塞影响较大。针对上述结果,文章设计了防堵塞的斜棱台漏斗,该漏斗在侧壁上增加了往复运动的扰动球,设计成本较低,且能有效防止铺洒骨料的漏斗出现堵塞现象。
Abstract:
In the aggregate-bed 3D concrete printing, to avoid the jamming effect happened in the aggregate-spreading hopper, the motion and jamming of the aggregates in hopper was researched in this work by using the EDEM code based on the discrete element method. Three types of hoppers, circular truncated cone(CTC), frustum of square pyramid(FSP)and frustum of oblique pyramid(FOP), were considered in the calculation. And the aggregate size, aggregate quantity and hopper height were the calculation variables. In all, 81 groups of data were obtained. Results revealed that the FSP and FOP hoppers had the same volume which was greater than that of CTC hopper with the same feature size. During spreading aggregates, the jammed probability of the CTC hopper was the highest, the FSP hopper was the second and the FOP hopper showed the lowest jammed probability. In addition, the aggregate size affected the jamming more than the aggregate quantity and hopper height did. Based on the findings, an anti-jamming FOP hopper was designed in this work. On the side wall of the designed hopper, an excitation ball with reciprocal motion was set. Such design had lower cost but would effectively prevent the jamming appeared in the hopper during the aggregate spreading.

参考文献/References:

[1] LOWKE D, DINI E, PERROT A, et al. Particle-bed 3D printing in concrete construction possibilities and challenges[J]. Cement and Concrete Research, 2018, 112: 50-65.
[2] ZHANG C, NERELLA V N, KRISHNA A, et al. Mix design concepts for 3D printable concrete: a review[J]. Cement and Concrete Composites, 2021, 122: 104155.
[3] 汤寄予, 张亚可, 高丹盈, 等. 3D打印混凝土研究现状及前景展望[J]. 河南大学学报(自然科学版), 2022, 52(6): 734-744.
[4] JI G C, XIAO J Z, ZHI P, et al. Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates[J]. Construction and Building Materials, 2022, 325: 126740.
[5] LIU H W, LIU C, BAI G L, et al. Influence of pore defects on the hardened properties of 3D printed concrete with coarse aggregate[J]. Additive Manufacturing, 2022, 55: 102843.
[6] WANG X G, JIA L T, JIA Z J, et al. Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process[J]. Journal of Building Engineering, 2022, 56: 104745.
[7] 刘化威, 刘超, 白国良, 等. 基于孔结构缺陷的3D打印粗骨料混凝土力学性能试验研究[J]. 土木工程学报, 2022, 55(12): 54-64.
[8] LIU C, CHEN Y N, ZHANG Z D, et al. Study of the influence of sand on rheological properties, bubble features and buildability of fresh foamed concrete for 3D printing[J]. Construction and Building Materials, 2022, 356: 129292.
[9] SINGH A, LIU Q, XIAO J Z, et al. Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction[J]. Construction and Building Materials, 2022, 323: 126616.
[10] YU S W, DU H J, SANJAYAN J. Aggregate-bed 3D concrete printing with cement paste binder[J]. Cement and Concrete Research, 2020, 136: 106169.
[11] 吕奇峰, 辛格, 朱平华, 等. 一种3D打印透水混凝土结构及其制备方法: CN114434590A[P]. 2022-05-06.
[12] HAO J H, LI Y J, LIU Y, et al. Jamming in granular shear flows of frictional, polydisperse cylindrical particles[J]. Advanced Powder Technology, 2021, 32(10): 3746-3759.
[13] SUN H L, XU S L, PAN X D, et al. Investigating the jamming of particles in a three-dimensional fluid-driven flow via coupled CFD-DEM simulations[J]. International Journal of Multiphase Flow, 2019, 114: 140-153.
[14] 封金财, 李涛, 刘文影. 骨料掺量对硅气凝胶砂浆性能的实验研究[J]. 常州大学学报(自然科学版), 2019, 31(2): 88-92.
[15] LIU H R, JIA F G, XIAO Y W, et al. Numerical analysis of the effect of the contraction rate of the curved hopper on flow characteristics of the silo discharge[J]. Powder Technology, 2019, 356: 858-870.
[16] LIU H R, HAN Y L, JIA F G, et al. An experimental investigation on jamming and critical orifice size in the discharge of a two-dimensional silo with curved hopper[J]. Advanced Powder Technology, 2021, 32(1): 88-98.
[17] ZHANG Y X, JIA F G, ZENG Y, et al. DEM study in the critical height of flow mechanism transition in a conical silo[J]. Powder Technology, 2018, 331: 98-106.
[18] MEHDIZAD M, FULLARD L, GALVOSAS P, et al. Quantitative measurements of flow dynamics in 3D hoppers using MRI[J]. Powder Technology, 2021, 392: 69-80.
[19] ZHAO Y, CHEW J. Effect of lognormal particle size distributions of non-spherical particles on hopper discharge characteristics[J]. Chemical Engineering Research and Design, 2020, 163: 230-240.
[20] FENG W Y, HAN Y L, CHEN P Y, et al. Effect of eccentricity on the particle flow characteristics in a double-orifice silo[J]. Powder Technology, 2023, 421: 118413.
[21] CHEN F Y, XIA Y D, KLINGER J, et al. Hopper discharge flow dynamics of milled pine and prediction of process upsets using the discrete element method[J]. Powder Technology, 2023, 415: 118165.
[22] LYU Q F, CHEN A G, JIA J, et al. Fluids flow in granular aggregate packings reconstructed by high-energy X-ray computed tomography and lattice Boltzmann method[J]. Computers & Fluids, 2023, 253: 105787.
[23] HUANG X J, ZHENG Q J, LIU D D, et al. A design method of hopper shape optimization with improved mass flow pattern and reduced particle segregation[J]. Chemical Engineering Science, 2022, 253: 117579.
[24] XU S L, SUN H L, CAI Y Q, et al. Studying the orifice jamming of a polydispersed particle system via coupled CFD-DEM simulations[J]. Powder Technology, 2020, 368: 308-322.
[25] FAN J H, LUU L H, PHILIPPE P, et al. Discharge rate characterization for submerged grains flowing through a hopper using DEM-LBM simulations[J]. Powder Technology, 2022, 404: 117421.
[26] 麻礼东, 杨光辉, 张晟, 等. 三维漏斗中颗粒物质堵塞问题的数值实验研究[J]. 物理学报, 2018, 67(4): 132-137.
[27] ZHAO Y, COCCO R A, YANG S L, et al. DEM study on the effect of particle-size distribution on jamming in a 3D conical hopper[J]. AIChE Journal, 2019, 65(2): 512-519.
[28] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
[29] HE S D, LI Y R, AYDIN A. A comparative study of UDEC simulations of an unsupported rock tunnel[J]. Tunnelling and Underground Space Technology, 2018, 72: 242-249.
[30] XU F, LI X Y, XIONG Q Y, et al. Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: from experimental studies to PFC 3D simulations[J]. Construction and Building Materials, 2022, 354: 129222.
[31] BERGER R, KLOSS C, KOHLMEYER A, et al. Hybrid parallelization of the LIGGGHTS open-source DEM code[J]. Powder Technology, 2015, 278: 234-247.
[32] WEI H, ZHAO Y H, ZHANG J, et al. LIGGGHTS and EDEM application on charging system of iron making blast furnace[J]. Advanced Powder Technology, 2017, 28(10): 2482-2487.
[33] YU Y W, SAXÉN H. Experimental and DEM study of segregation of ternary size particles in a blast furnace top bunker model[J]. Chemical Engineering Science, 2010, 65(18): 5237-5250.
[34] 吕奇峰, 戴鹏飞, 吴恒. 一种自动化铺洒粗骨料的漏斗: CN217970850U[P]. 2022-12-06.

相似文献/References:

[1]封金财,孙 浩,朱平华,等.气凝胶砂浆及其复合混凝土研究[J].常州大学学报(自然科学版),2020,32(01):70.[doi:10.3969/j.issn.2095-0411.2020.01.011]
 FENG Jincai,SUN Hao,ZHU Pinghua,et al.Review of Mortar and Concrete Composite Incorporated with Aerogel Super-Insulator or Photocatalytic Materials[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):70.[doi:10.3969/j.issn.2095-0411.2020.01.011]

备注/Memo

备注/Memo:
收稿日期: 2023-06-26。
基金项目: 国家自然科学基金资助项目(51908075)。
作者简介: 吕奇峰(1986—), 男, 河北邢台人, 博士, 讲师。E-mail: lqf@cczu.edu.cn
更新日期/Last Update: 1900-01-01