参考文献/References:
[1] 杨贤群, 王立楠, 孙逸铭, 等. SiC增强镍基耐磨涂层设计及性能分析[J]. 聊城大学学报(自然科学版), 2016, 29(1): 47-51.
[2] 盛况, 郭清, 张军明, 等. 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32(30): 1-7, 3.
[3] 张永刚, 宁平凡, 刘婕, 等. 寄生参数对并联SiC MOSFET电流不均衡的影响[J]. 聊城大学学报(自然科学版), 2021, 34(5): 8-14.
[4] 赵吉晓, 蔡文静, 焦志锋, 等. Pd-Cu/SiC催化苯乙炔选择性加氢性能[J]. 常州大学学报(自然科学版), 2022, 34(5): 23-29.
[5] KUKUSHKIN S A, NUSSUPOV K K, OSIPOV A V, et al. Structural properties and parameters of epitaxial silicon carbide films, grown by atomic substitution on the high-resistance(111)oriented silicon[J]. Superlattices and Microstructures, 2017, 111: 899-911.
[6] PHAM T A, HOLD L, LACOPI A, et al. Wet oxidation of 3C-SiC on Si for MEMS processing and use in harsh environments: effects of the film thicknesses, crystalline orientations, and growth temperatures[J]. Sensors and Actuators A: Physical, 2021, 317: 112474.
[7] DELPLANCKE M P, POWERS J M, VANDENTOP G J, et al. Preparation and characterization of amorphous SiC: H thin films[J]. Journal of Vacuum Science & Technology A, 1991, 9(3): 450-455.
[8] NISHINO S, HAZUKI Y, MATSUNAMI H, et al. Chemical vapor deposition of single crystalline β-SiC films on silicon substrate with sputtered SiC intermediate layer[J]. Journal of the Electrochemical Society, 1980, 127(12): 2674-2680.
[9] FENG Z C, LIN H H, XIN B, et al. Structural characteristics of 3C-SiC thin films grown on Si-face and C-face 4H—SiC substrates by high temperature chemical vapor deposition[J]. Vacuum, 2023, 207: 111643.
[10] FERHATI H, DJEFFAL F, BENDJERAD A, et al. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: effect of sputtering power[J]. Journal of Alloys and Compounds, 2022, 907: 164464.
[11] MA J, WANG Z W, QI H, et al. Fabrication of novel pyramid-textured and nanostructured Cu2O/Si heterojunctions[J]. Surface Innovations, 2021, 9(4): 199-206.
[12] SU J B, WANG Z W, MA J, et al. Selective bias deposition of CuO thin film on unpolished Si wafer[J]. Materials Research Express, 2020, 7(2): 026402.
[13] ZHU Y Q, MA J, ZHOU L, et al. Cu2O porous nanostructured films fabricated by positive bias sputtering deposition[J]. Nanotechnology, 2019, 30(9): 095702.
[14] 周磊, 诸一琦, 苏江滨, 等. 负偏置沉积法可控制备Cu2O多孔纳米结构薄膜[J]. 科学通报, 2017, 62(26): 3050-3056.
[15] SU J B, ZHANG J H, LIU Y, et al. Parameter-dependent oxidation of physically sputtered Cu and the related fabrication of Cu-based semiconductor films with metallic resistivity[J]. Science China Materials, 2016, 59(2): 144-150.
[16] SU J B, WANG H H, JIANG M P, et al. Bias deposition of nanoporous Cu thin films[J]. Materials Letters, 2013, 102/103: 72-75.
[17] SU J B, LI X X, JIANG M P, et al. Layer-plus-wire growth of copper by small incident angle deposition[J]. Materials Letters, 2013, 92: 304-307.
[18] RAJAB S M, OLIVEIRA I C, MASSI M, et al. Effect of the thermal annealing on the electrical and physical properties of SiC thin films produced by RF magnetron sputtering[J]. Thin Solid Films, 2006, 515(1): 170-175.
[19] SINGH N, KAUR D. Influence of sputtering power on structural, mechanical and photoluminescence properties of nanocrystalline SiC thin films[C]//AIP Conference Proceedings. Bikaner: AIP, 2016: 34-52.
[20] PANDE C S, COOPER K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials[J]. Progress in Materials Science, 2009, 54(6): 689-706.
[21] TAVSANOGLU T, ZAYIM E O, AGIRSEVEN O, et al. Optical, electrical and microstructural properties of SiC thin films deposited by reactive dc magnetron sputtering[J]. Thin Solid Films, 2019, 674: 1-6.
[22] 亓常松, 冉均国, 郑昌琼. 直流磁控溅射SiC薄膜的制备与性能[C]//第三届中国功能材料及其应用学术会议论文集. 重庆: 第三届中国功能材料及其应用学术会议, 1998: 472-474.
[23] WANG Y Z, TUOFU Z M, YUE Z M, et al. Research on adhesion strength and optical properties of SiC films obtained via RF magnetron sputtering[J]. Chinese Journal of Physics, 2020, 64: 79-86.
[24] ZHENG J H, KATO M, NAKASA K. Effect of intermediate layer on wear-delamination life of low-frictional SiC-2.6%Ti film sputter-deposited on titanium substrate[J]. Surface and Coatings Technology, 2010, 205(7): 2532-2537.
[25] 徐涛. 退火以及缓冲层对富碳SiC薄膜性能的影响[D]. 济南: 山东大学, 2020.
[26] 张志远. 分子束外延及离子共注入技术制备p型ZnO单晶薄膜[D]. 杭州: 浙江大学, 2018.
[27] DURUPT P, CANUT B, ROGER J A, et al. Synthesis and analysis of buried SiC layers in monocrystalline silicon[J]. Thin Solid Films, 1982, 90(3): 353-357.
[28] 毛旭, 陆家东, 周祯来, 等. SiC材料制备工艺研究进展[J]. 云南大学学报(自然科学版), 2002, 24(S1): 197-202.
[29] MOTOYAMA S I, KANEDA S. Low-temperature growth of 3C-SiC by the gas source molecular beam epitaxial method[J]. Applied Physics Letters, 1989, 54(3): 242-243.
[30] TANAKA S, KERN R S, DAVIS R F. Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy[J]. Applied Physics Letters, 1994, 65(22): 2851-2853.
[31] FISSEL A, SCHRÖTER B, RICHTER W. Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy[J]. Applied Physics Letters, 1995, 66(23): 3182-3184.
[32] FISSEL A, KAISER U, DUCKE E, et al. Epitaxial growth of SiC thin films on Si-stabilized α-SiC(0001)at low temperatures by solid-source molecular beam epitaxy[J]. Journal of Crystal Growth, 1995, 154(1/2): 72-80.
[33] SAMBONSUGE S, ITO S, JIAO S, et al. Evaluations of crystal defects of 3C-SiC film on Si(110)substrate[J]. Physica Status Solidi, 2016, 213(5): 1125-1129.
[34] WANG Z W, SU J B, QI H, et al. Porous nanocrystalline WO3 thin films: fabrication, electrical and optical properties[J]. Surface Innovations, 2021, 9(4): 214-221.
[35] 苏江滨, 王智伟, 祁昊, 等. 退火处理对离子束溅射WO3-x薄膜结构和特性的影响[J]. 微纳电子技术, 2021, 58(1): 65-71.
[36] XUE J X, ZHU Y Q, JIANG M P, et al. Electrochromic WO3 thin films prepared by combining ion-beam sputtering deposition with post-annealing[J]. Materials Letters, 2015, 149: 127-129.
[37] VALENTINI A, CONVERTINO A, ALVISI M, et al. Synthesis of silicon carbide thin films by ion beam sputtering[J]. Thin Solid Films, 1998, 335(1/2): 80-84.
[38] JIN C G, WU X M, ZHUGE L J. Room-temperature growth of SiC thin films by dual-ion-beam sputtering deposition[J]. Research Letters in Physical Chemistry, 2008, 2008: 1-5.
[39] CRAMER C, FARNELL C, FARNELL C, et al. Thermoelectric properties and morphology of Si/SiC thin-film multilayers grown by ion beam sputtering[J]. Coatings, 2018, 8(3): 109.
[40] 郭丽彬. 离子注入SiC薄膜的制备与表征及Er3+发光行为的研究[D]. 天津: 天津大学, 2007.
[41] 陈长清, 杨立新, 严金龙, 等. C+注入硅形成β-SiC埋层研究[J]. 半导体学报, 1997, 12(2): 140-145.
[42] LI G B, ZHANG J Z, MENG Q L, et al. Synthesis of silicon carbide films by combined implantation with sputtering techniques[J]. Applied Surface Science, 2007, 253(20): 8428-8434.
[43] HOPF T, SCHUETTE F, LEVENEUR J, et al. Ion-beam synthesis of 3C-SiC surface layers on silicon[J]. Surface and Interface Analysis, 2012, 44(4): 399-404.
[44] NUSSUPOV K K, BEISENKHANOV N B, ZHARIKOV S K, et al. Structure and composition of silicon carbide films synthesized by ion implantation[J]. Physics of the Solid State, 2014, 56(11): 2307-2321.