[1]苏江滨,朱秀梅,季雪梅,等.Si基SiC薄膜物理制备工艺研究进展[J].常州大学学报(自然科学版),2024,36(01):9-17.[doi:10.3969/j.issn.2095-0411.2024.01.002]
 SU Jiangbin,ZHU Xiumei,JI Xuemei,et al.Advances in physical preparation process of SiC thin films on Si substrates[J].Journal of Changzhou University(Natural Science Edition),2024,36(01):9-17.[doi:10.3969/j.issn.2095-0411.2024.01.002]
点击复制

Si基SiC薄膜物理制备工艺研究进展()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年01期
页码:
9-17
栏目:
材料科学与工程
出版日期:
2024-01-28

文章信息/Info

Title:
Advances in physical preparation process of SiC thin films on Si substrates
文章编号:
2095-0411(2024)01-0009-09
作者:
苏江滨朱秀梅季雪梅祁昊潘鹏何祖明
常州大学 微电子与控制工程学院, 江苏 常州 213164
Author(s):
SU Jiangbin ZHU Xiumei JI Xuemei QI Hao PAN Peng HE Zuming
School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
关键词:
SiC薄膜 磁控溅射 分子束外延 离子束溅射 离子注入
Keywords:
SiC thin films magnetron sputtering molecular beam epitaxy ion beam sputtering ion implantation
分类号:
TB 35
DOI:
10.3969/j.issn.2095-0411.2024.01.002
文献标志码:
A
摘要:
随着微纳电子器件集成化程度不断提高,用Si基SiC薄膜取代SiC体单晶引起了人们极大的兴趣,这种方法不仅有利于降低生产成本,还能与Si基大规模集成电路兼容。文章综述了磁控溅射、分子束外延、离子束溅射、离子注入4种物理制备Si基SiC薄膜主要工艺的研究进展,简单阐述了各种工艺对薄膜性能的影响,对各种工艺的优缺点和存在的问题进行了评述,同时指明了Si基SiC薄膜领域未来的发展方向。
Abstract:
With the continuous improvement of the integration degree of micro/nano electronic devices, the replacement of SiC bulk single crystal with Si based SiC films is not only conducive to reducing the production cost, but also compatible with Si based large-scale integrated circuits. Therefore, the preparation of SiC thin films on Si substrates has aroused great interest. In this review, the research progress of four main physical preparation processes of Si based SiC thin films, including magnetron sputtering, molecular beam epitaxy, ion beam sputtering and ion implantation, is reviewed. The effects of various processes on the properties of thin films are briefly described. Further, the advantages, disadvantages and existing problems of various processes are reviewed, and the future development direction of Si-based SiC thin films is also pointed out.

参考文献/References:

[1] 杨贤群, 王立楠, 孙逸铭, 等. SiC增强镍基耐磨涂层设计及性能分析[J]. 聊城大学学报(自然科学版), 2016, 29(1): 47-51.
[2] 盛况, 郭清, 张军明, 等. 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32(30): 1-7, 3.
[3] 张永刚, 宁平凡, 刘婕, 等. 寄生参数对并联SiC MOSFET电流不均衡的影响[J]. 聊城大学学报(自然科学版), 2021, 34(5): 8-14.
[4] 赵吉晓, 蔡文静, 焦志锋, 等. Pd-Cu/SiC催化苯乙炔选择性加氢性能[J]. 常州大学学报(自然科学版), 2022, 34(5): 23-29.
[5] KUKUSHKIN S A, NUSSUPOV K K, OSIPOV A V, et al. Structural properties and parameters of epitaxial silicon carbide films, grown by atomic substitution on the high-resistance(111)oriented silicon[J]. Superlattices and Microstructures, 2017, 111: 899-911.
[6] PHAM T A, HOLD L, LACOPI A, et al. Wet oxidation of 3C-SiC on Si for MEMS processing and use in harsh environments: effects of the film thicknesses, crystalline orientations, and growth temperatures[J]. Sensors and Actuators A: Physical, 2021, 317: 112474.
[7] DELPLANCKE M P, POWERS J M, VANDENTOP G J, et al. Preparation and characterization of amorphous SiC: H thin films[J]. Journal of Vacuum Science & Technology A, 1991, 9(3): 450-455.
[8] NISHINO S, HAZUKI Y, MATSUNAMI H, et al. Chemical vapor deposition of single crystalline β-SiC films on silicon substrate with sputtered SiC intermediate layer[J]. Journal of the Electrochemical Society, 1980, 127(12): 2674-2680.
[9] FENG Z C, LIN H H, XIN B, et al. Structural characteristics of 3C-SiC thin films grown on Si-face and C-face 4H—SiC substrates by high temperature chemical vapor deposition[J]. Vacuum, 2023, 207: 111643.
[10] FERHATI H, DJEFFAL F, BENDJERAD A, et al. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: effect of sputtering power[J]. Journal of Alloys and Compounds, 2022, 907: 164464.
[11] MA J, WANG Z W, QI H, et al. Fabrication of novel pyramid-textured and nanostructured Cu2O/Si heterojunctions[J]. Surface Innovations, 2021, 9(4): 199-206.
[12] SU J B, WANG Z W, MA J, et al. Selective bias deposition of CuO thin film on unpolished Si wafer[J]. Materials Research Express, 2020, 7(2): 026402.
[13] ZHU Y Q, MA J, ZHOU L, et al. Cu2O porous nanostructured films fabricated by positive bias sputtering deposition[J]. Nanotechnology, 2019, 30(9): 095702.
[14] 周磊, 诸一琦, 苏江滨, 等. 负偏置沉积法可控制备Cu2O多孔纳米结构薄膜[J]. 科学通报, 2017, 62(26): 3050-3056.
[15] SU J B, ZHANG J H, LIU Y, et al. Parameter-dependent oxidation of physically sputtered Cu and the related fabrication of Cu-based semiconductor films with metallic resistivity[J]. Science China Materials, 2016, 59(2): 144-150.
[16] SU J B, WANG H H, JIANG M P, et al. Bias deposition of nanoporous Cu thin films[J]. Materials Letters, 2013, 102/103: 72-75.
[17] SU J B, LI X X, JIANG M P, et al. Layer-plus-wire growth of copper by small incident angle deposition[J]. Materials Letters, 2013, 92: 304-307.
[18] RAJAB S M, OLIVEIRA I C, MASSI M, et al. Effect of the thermal annealing on the electrical and physical properties of SiC thin films produced by RF magnetron sputtering[J]. Thin Solid Films, 2006, 515(1): 170-175.
[19] SINGH N, KAUR D. Influence of sputtering power on structural, mechanical and photoluminescence properties of nanocrystalline SiC thin films[C]//AIP Conference Proceedings. Bikaner: AIP, 2016: 34-52.
[20] PANDE C S, COOPER K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials[J]. Progress in Materials Science, 2009, 54(6): 689-706.
[21] TAVSANOGLU T, ZAYIM E O, AGIRSEVEN O, et al. Optical, electrical and microstructural properties of SiC thin films deposited by reactive dc magnetron sputtering[J]. Thin Solid Films, 2019, 674: 1-6.
[22] 亓常松, 冉均国, 郑昌琼. 直流磁控溅射SiC薄膜的制备与性能[C]//第三届中国功能材料及其应用学术会议论文集. 重庆: 第三届中国功能材料及其应用学术会议, 1998: 472-474.
[23] WANG Y Z, TUOFU Z M, YUE Z M, et al. Research on adhesion strength and optical properties of SiC films obtained via RF magnetron sputtering[J]. Chinese Journal of Physics, 2020, 64: 79-86.
[24] ZHENG J H, KATO M, NAKASA K. Effect of intermediate layer on wear-delamination life of low-frictional SiC-2.6%Ti film sputter-deposited on titanium substrate[J]. Surface and Coatings Technology, 2010, 205(7): 2532-2537.
[25] 徐涛. 退火以及缓冲层对富碳SiC薄膜性能的影响[D]. 济南: 山东大学, 2020.
[26] 张志远. 分子束外延及离子共注入技术制备p型ZnO单晶薄膜[D]. 杭州: 浙江大学, 2018.
[27] DURUPT P, CANUT B, ROGER J A, et al. Synthesis and analysis of buried SiC layers in monocrystalline silicon[J]. Thin Solid Films, 1982, 90(3): 353-357.
[28] 毛旭, 陆家东, 周祯来, 等. SiC材料制备工艺研究进展[J]. 云南大学学报(自然科学版), 2002, 24(S1): 197-202.
[29] MOTOYAMA S I, KANEDA S. Low-temperature growth of 3C-SiC by the gas source molecular beam epitaxial method[J]. Applied Physics Letters, 1989, 54(3): 242-243.
[30] TANAKA S, KERN R S, DAVIS R F. Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy[J]. Applied Physics Letters, 1994, 65(22): 2851-2853.
[31] FISSEL A, SCHRÖTER B, RICHTER W. Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy[J]. Applied Physics Letters, 1995, 66(23): 3182-3184.
[32] FISSEL A, KAISER U, DUCKE E, et al. Epitaxial growth of SiC thin films on Si-stabilized α-SiC(0001)at low temperatures by solid-source molecular beam epitaxy[J]. Journal of Crystal Growth, 1995, 154(1/2): 72-80.
[33] SAMBONSUGE S, ITO S, JIAO S, et al. Evaluations of crystal defects of 3C-SiC film on Si(110)substrate[J]. Physica Status Solidi, 2016, 213(5): 1125-1129.
[34] WANG Z W, SU J B, QI H, et al. Porous nanocrystalline WO3 thin films: fabrication, electrical and optical properties[J]. Surface Innovations, 2021, 9(4): 214-221.
[35] 苏江滨, 王智伟, 祁昊, 等. 退火处理对离子束溅射WO3-x薄膜结构和特性的影响[J]. 微纳电子技术, 2021, 58(1): 65-71.
[36] XUE J X, ZHU Y Q, JIANG M P, et al. Electrochromic WO3 thin films prepared by combining ion-beam sputtering deposition with post-annealing[J]. Materials Letters, 2015, 149: 127-129.
[37] VALENTINI A, CONVERTINO A, ALVISI M, et al. Synthesis of silicon carbide thin films by ion beam sputtering[J]. Thin Solid Films, 1998, 335(1/2): 80-84.
[38] JIN C G, WU X M, ZHUGE L J. Room-temperature growth of SiC thin films by dual-ion-beam sputtering deposition[J]. Research Letters in Physical Chemistry, 2008, 2008: 1-5.
[39] CRAMER C, FARNELL C, FARNELL C, et al. Thermoelectric properties and morphology of Si/SiC thin-film multilayers grown by ion beam sputtering[J]. Coatings, 2018, 8(3): 109.
[40] 郭丽彬. 离子注入SiC薄膜的制备与表征及Er3+发光行为的研究[D]. 天津: 天津大学, 2007.
[41] 陈长清, 杨立新, 严金龙, 等. C+注入硅形成β-SiC埋层研究[J]. 半导体学报, 1997, 12(2): 140-145.
[42] LI G B, ZHANG J Z, MENG Q L, et al. Synthesis of silicon carbide films by combined implantation with sputtering techniques[J]. Applied Surface Science, 2007, 253(20): 8428-8434.
[43] HOPF T, SCHUETTE F, LEVENEUR J, et al. Ion-beam synthesis of 3C-SiC surface layers on silicon[J]. Surface and Interface Analysis, 2012, 44(4): 399-404.
[44] NUSSUPOV K K, BEISENKHANOV N B, ZHARIKOV S K, et al. Structure and composition of silicon carbide films synthesized by ion implantation[J]. Physics of the Solid State, 2014, 56(11): 2307-2321.

备注/Memo

备注/Memo:
收稿日期: 2023-09-08。
基金项目: 江苏省自然科学基金资助项目(BK20191453); 江苏省研究生科研创新计划资助项目(KYCX21_2819,KYCX21_2825)。
作者简介: 苏江滨(1981—), 男, 福建安溪人, 博士, 正高级实验师。 E-mail: jbsu@cczu.edu.cn
更新日期/Last Update: 1900-01-01