[1]钱惺悦,尹轶萱,何光裕,等.FeCo2S4/NF自支撑电极的制备及其电化学性能[J].常州大学学报(自然科学版),2024,36(01):18-26.[doi:10.3969/j.issn.2095-0411.2024.01.003]
 QIAN Xingyue,YIN Yixuan,HE Guangyu,et al.Preparation of self-supported FeCo2S4/NF electrode and its electrochemical properties[J].Journal of Changzhou University(Natural Science Edition),2024,36(01):18-26.[doi:10.3969/j.issn.2095-0411.2024.01.003]
点击复制

FeCo2S4/NF自支撑电极的制备及其电化学性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年01期
页码:
18-26
栏目:
化学化工
出版日期:
2024-01-28

文章信息/Info

Title:
Preparation of self-supported FeCo2S4/NF electrode and its electrochemical properties
文章编号:
2095-0411(2024)01-0018-09
作者:
钱惺悦尹轶萱何光裕陈海群
常州大学 石油化工学院, 江苏 常州 213164
Author(s):
QIAN Xingyue YIN Yixuan HE Guangyu CHEN Haiqun
School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
关键词:
过渡金属硫化物 自支撑 FeCo2S4 能量密度 电化学
Keywords:
transition metal sulfide self-supported FeCo2S4 energy density electrochemistry
分类号:
TQ 151.1
DOI:
10.3969/j.issn.2095-0411.2024.01.003
文献标志码:
A
摘要:
以泡沫镍为自支撑基底,采用两步水热法在泡沫镍(NF)上合成FeCo2S4自支撑电极材料(FeCo2S4/NF)。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱(XPS)等对制备的电极材料进行表征分析,探究FeCo2S4/NF电极材料微观结构和电化学性能之间的关联,并在三电极体系中测试电极材料的电化学性能,将其与活性炭组装成非对称超级电容器,测试其在二电极体系中的电化学性能。结果表明,以泡沫镍为基底的自支撑FeCo2S4纳米片彼此相互连接,形成具有大量空隙的三维纳米结构,促进了电极材料的高效电子传递和长期稳定,从而使FeCo2S4/NF自支撑电极材料具有优良的储能性能。
Abstract:
The self-supported FeCo2S4 electrode(FeCo2S4/NF)was synthesized by a two-step hydrothermal method using nickel foam(NF)as the substrate. The prepared electrodes were characterized and analyzed by SEM, XRD and XPS to explore the relationship between the microstructure and electrochemical properties of FeCo2S4/NF. The electrochemical performance of the electrode materials was tested in a three-electrode system. Furthermore, the asymmetric supercapacitor was assembled using activated carbon as cathode to test the electrochemical performance in a two-electrode system. The results showed that the self-supported FeCo2S4 nanosheets were interconnected with NF to form a three-dimensional nanostructure with numerous pores. Such unique structure significantly promoted the efficient electron transfer and long-term stability of the electrode material, thus making the self-supported FeCo2S4/NF electrode with excellent energy storage performance.

参考文献/References:

[1] ZHANG J L, CHEN H B, WEN M, et al. Lithiophilic 3D copper-based magnetic current collector for lithium-free anode to realize deep lithium deposition[J]. Advanced Functional Materials, 2022, 32(13): 2110110.
[2] SHAIKH N S, UBALE S B, MANE V J, et al. Novel electrodes for supercapacitor: conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene[J]. Journal of Alloys and Compounds, 2022, 893: 161998.
[3] YANG X, ZHENG G X, WANG Q Y, et al. Functional application of multi-element metal composite materials[J]. Journal of Alloys and Compounds, 2022, 895: 162622.
[4] YAN J, LIU T, LIU X D, et al. Metal-organic framework-based materials for flexible supercapacitor application[J]. Coordination Chemistry Reviews, 2022, 452: 214300.
[5] HE Y Y, DONG C F, HE S J, et al. Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage[J]. Nano Research, 2021, 14(11): 4014-4024.
[6] ELSAID M A M, HASSAN A A, MOHAMED S G, et al. Synthesis and electrochemical performance of porous FeCo2S4 nanorods as an electrode material for supercapacitor[J]. Journal of Energy Storage, 2021, 44: 103330.
[7] MA T Y, DAI S, QIAO S Z. Self-supported electrocatalysts for advanced energy conversion processes[J]. Materials Today, 2016, 19(5): 265-273.
[8] HUANG Y P, CUI F, HUA M Q, et al. Hierarchical FeCo2S4 nanotube arrays deposited on 3D carbon foam as binder-free electrodes for high-performance asymmetric pseudocapacitors[J]. Asian Journal of Chemistry, 2018, 13(21): 3212-3221.
[9] TANG S C, ZHU B G, SHI X L, et al. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors[J]. Advanced Energy Materials, 2017, 7(6): 1601985.
[10] YAN S X, LUO S H, FENG J, et al. Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor[J]. Chemical Engineering Journal, 2020, 381: 122695.
[11] XIU N, ZHAO K X, LIN S Y, et al. Hierarchical nanosheets-anchored-on-microsheets FeCo2S4 arrays as binder-free electrode for high-performance hybrid supercapacitor[J]. Journal of Alloys and Compounds, 2019, 805: 33-40.
[12] XUE L P, SHEN C F, ZHENG M B, et al. Hydrothermal synthesis of graphene-ZnS quantum dot nanocomposites[J]. Materials Letters, 2011, 65(2): 198-200.
[13] WANG H Y, LIANG M M, DUAN D, et al. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance[J]. Chemical Engineering Journal, 2018, 350: 523-533.
[14] LIAO C W, CHEN S Y, HSU L C, et al. Insights into electrocatalytic oxygen evolution over hierarchical FeCo2S4 nanospheres[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 431-440.
[15] DENG C F, YANG L S, YANG C M, et al. Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors[J]. Applied Surface Science, 2018, 428: 148-153.
[16] XU Y Y, GAO X H, CHU W Y, et al. Ni-Co sulfide nanoboxes with tunable compositions for high-performance electrochemical pseudocapacitors[J]. Journal of Materials Chemistry A, 2016, 4(26): 10248-10253.
[17] ZHU J A, TANG S C, WU J A, et al. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes[J]. Advanced Energy Materials, 2017, 7(2): 1601234.
[18] LI S, HUANG W, YANG Y, et al. Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(41): 20480-20490.
[19] WANG H Z, MI N Y, SUN S F, et al. Oxygen vacancies enhancing capacitance of MgCo2O4 for high performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2021, 869: 159294.
[20] LIU M X, WANG X, ZHU D Z, et al. Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage[J]. Chemical Engineering Journal, 2017, 308: 240-247.

备注/Memo

备注/Memo:
收稿日期: 2023-06-15。
基金项目: 国家自然科学基金资助项目(21978026); 常州市领军型创新人才引进培育项目C类(CQ20210114); 常州市引进外国人才专项计划资助项目(CQ20214032)。
作者简介: 钱惺悦(1990—), 女, 江苏常州人, 博士, 讲师。 通信联系人: 陈海群(1970—), E-mail: chenhq@cczu.edu.cn
更新日期/Last Update: 1900-01-01