参考文献/References:
[1] ZHANG J L, CHEN H B, WEN M, et al. Lithiophilic 3D copper-based magnetic current collector for lithium-free anode to realize deep lithium deposition[J]. Advanced Functional Materials, 2022, 32(13): 2110110.
[2] SHAIKH N S, UBALE S B, MANE V J, et al. Novel electrodes for supercapacitor: conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene[J]. Journal of Alloys and Compounds, 2022, 893: 161998.
[3] YANG X, ZHENG G X, WANG Q Y, et al. Functional application of multi-element metal composite materials[J]. Journal of Alloys and Compounds, 2022, 895: 162622.
[4] YAN J, LIU T, LIU X D, et al. Metal-organic framework-based materials for flexible supercapacitor application[J]. Coordination Chemistry Reviews, 2022, 452: 214300.
[5] HE Y Y, DONG C F, HE S J, et al. Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage[J]. Nano Research, 2021, 14(11): 4014-4024.
[6] ELSAID M A M, HASSAN A A, MOHAMED S G, et al. Synthesis and electrochemical performance of porous FeCo2S4 nanorods as an electrode material for supercapacitor[J]. Journal of Energy Storage, 2021, 44: 103330.
[7] MA T Y, DAI S, QIAO S Z. Self-supported electrocatalysts for advanced energy conversion processes[J]. Materials Today, 2016, 19(5): 265-273.
[8] HUANG Y P, CUI F, HUA M Q, et al. Hierarchical FeCo2S4 nanotube arrays deposited on 3D carbon foam as binder-free electrodes for high-performance asymmetric pseudocapacitors[J]. Asian Journal of Chemistry, 2018, 13(21): 3212-3221.
[9] TANG S C, ZHU B G, SHI X L, et al. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors[J]. Advanced Energy Materials, 2017, 7(6): 1601985.
[10] YAN S X, LUO S H, FENG J, et al. Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor[J]. Chemical Engineering Journal, 2020, 381: 122695.
[11] XIU N, ZHAO K X, LIN S Y, et al. Hierarchical nanosheets-anchored-on-microsheets FeCo2S4 arrays as binder-free electrode for high-performance hybrid supercapacitor[J]. Journal of Alloys and Compounds, 2019, 805: 33-40.
[12] XUE L P, SHEN C F, ZHENG M B, et al. Hydrothermal synthesis of graphene-ZnS quantum dot nanocomposites[J]. Materials Letters, 2011, 65(2): 198-200.
[13] WANG H Y, LIANG M M, DUAN D, et al. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance[J]. Chemical Engineering Journal, 2018, 350: 523-533.
[14] LIAO C W, CHEN S Y, HSU L C, et al. Insights into electrocatalytic oxygen evolution over hierarchical FeCo2S4 nanospheres[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 431-440.
[15] DENG C F, YANG L S, YANG C M, et al. Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors[J]. Applied Surface Science, 2018, 428: 148-153.
[16] XU Y Y, GAO X H, CHU W Y, et al. Ni-Co sulfide nanoboxes with tunable compositions for high-performance electrochemical pseudocapacitors[J]. Journal of Materials Chemistry A, 2016, 4(26): 10248-10253.
[17] ZHU J A, TANG S C, WU J A, et al. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes[J]. Advanced Energy Materials, 2017, 7(2): 1601234.
[18] LI S, HUANG W, YANG Y, et al. Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(41): 20480-20490.
[19] WANG H Z, MI N Y, SUN S F, et al. Oxygen vacancies enhancing capacitance of MgCo2O4 for high performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2021, 869: 159294.
[20] LIU M X, WANG X, ZHU D Z, et al. Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage[J]. Chemical Engineering Journal, 2017, 308: 240-247.