参考文献/References:
[1] CHEN X, YU S N, LIU W, et al. Recent advance on cobalt-based oxide catalyst for the catalytic removal of volatile organic compounds: a review[J]. Resources Chemicals and Materials, 2022, 1(1): 27-46.
[2] WU P, JIN X J, QIU Y C, et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts[J]. Environmental Science & Technology, 2021, 55(8): 4268-4286.
[3] LI Y F, CHEN T Y, ZHAO S Q, et al. Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene[J]. ACS Catalysis, 2022, 12(9): 4906-4917.
[4] 杨利娴. 我国工业源VOCs排放时空分布特征与控制策略研究[D]. 广州: 华南理工大学, 2012.
[5] 黄薇薇. 我国工业源挥发性有机化合物排放特征及其控制技术评估研究[D]. 杭州: 浙江大学, 2016.
[6] LI S J, DANG X Q, YU X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review[J]. Chemical Engineering Journal, 2020, 388: 124275.
[7] 雷娟. Co-MOF为前驱体制备的钴基金属氧化物及其甲苯催化氧化性能研究[D]. 太原: 太原理工大学, 2021.
[8] 吴祖良, 林建翔, 韩竞一, 等. V2O5-WO3/TiO2催化剂用于对二甲苯氧化去除实验研究[J]. 常州大学学报(自然科学版), 2020, 32(6): 42-47.
[9] REN Q M, FENG Z T, MO S P, et al. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene[J]. Catalysis Today, 2019, 332: 160-167.
[10] YANG W H, SU Z A, XU Z H, et al. Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Applied Catalysis B: Environmental, 2020, 260: 118150.
[11] SU Z A, YANG W H, WANG C Z, et al. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion[J]. Environmental Science & Technology, 2020, 54(19): 12684-12692.
[12] 刘照, 程丽军, 胡鑫, 等. 钴基催化剂催化燃烧VOCs的研究进展[J]. 现代化工, 2020, 40(7): 36-39, 44.
[13] 任秀秀, 夏凌云, 梁梦迪, 等. UiO-66及其官能化改性材料对C6烷烃吸附性能研究[J]. 常州大学学报(自然科学版), 2021, 33(5): 50-58.
[14] HAN W G, HUANG X S, LU G X, et al. Research progresses in the preparation of Co-based catalyst derived from Co-MOFs and application in the catalytic oxidation reaction[J]. Catalysis Surveys from Asia, 2019, 23(2): 64-89.
[15] DUAN C X, YU Y, HU H. Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis[J]. Green Energy & Environment, 2022, 7(1): 3-15.
[16] CHEN K, BAI S L, LI H Y, et al. The Co3O4 catalyst derived from ZIF-67 and their catalytic performance of toluene[J]. Applied Catalysis A: General, 2020, 599: 117614.
[17] LI X Y, JIANG Q Q, DOU S, et al. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst[J]. Journal of Materials Chemistry A, 2016, 4(41): 15836-15840.
[18] ZHAO J H, TANG Z C, DONG F, et al. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks(MOFs)for toluene catalytic oxidation[J]. Molecular Catalysis, 2019, 463: 77-86.
[19] 陈辉荣. MOFs衍生的三维多级孔钴基纳米材料的制备及其催化性能研究[D]. 广州: 华南理工大学, 2019.
[20] FANG W, CHEN J H, ZHOU X Y, et al. Zeolitic imidazolate framework-67-derived CeO2@Co3O4 core-shell microspheres with enhanced catalytic activity toward toluene oxidation[J]. Industrial & Engineering Chemistry Research, 2020, 59(22): 10328-10337.
[21] XU W J, CHEN X, CHEN J, et al. Bimetal oxide CuO/Co3O4 derived from Cu ions partly-substituted framework of ZIF-67 for toluene catalytic oxidation[J]. Journal of Hazardous Materials, 2021, 403: 123869.
[22] ZHU D D, HUANG Y, CAO J J, et al. Cobalt nanoparticles encapsulated in porous nitrogen-doped carbon: oxygen activation and efficient catalytic removal of formaldehyde at room temperature[J]. Applied Catalysis B: Environmental, 2019, 258: 117981.
[23] HAN D W, MA X Y, YANG X Q, et al. Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation[J]. Journal of Colloid and Interface Science, 2021, 603: 695-705.
[24] SUN H, YU X L, GUO Y C, et al. Achieving efficient toluene oxidation over metal-organic framework-derived Pt/CeO2-Co3O4 catalyst[J]. Applied Surface Science, 2022, 591: 153225.
[25] XIAO M L, YU X L, GUO Y C, et al. Boosting toluene combustion by tuning electronic metal-support interactions in in situ grown Pt@Co3O4 catalysts[J]. Environmental Science & Technology, 2022, 56(2): 1376-1385.
[26] WANG S, ZHAO T T, LI G H, et al. From metal-organic squares to porous zeolite-like supramolecular assemblies[J]. Journal of the American Chemical Society, 2010, 132(51): 18038-18041.
[27] LEI J, WANG S, LI J P. Mesoporous Co3O4 derived from Co-MOFs with different morphologies and ligands for toluene catalytic oxidation[J]. Chemical Engineering Science, 2020, 220: 115654.
[28] LEI J A, WANG S A, LI J P. Mesoporous Co3O4 derived from facile calcination of octahedral Co-MOFs for toluene catalytic oxidation[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5583-5590.
[29] LEI J, WANG S, LI J P, et al. Different effect of Y(Y=Cu, Mn, Fe, Ni)doping on Co3O4 derived from Co-MOF for toluene catalytic destruction[J]. Chemical Engineering Science, 2022, 251: 117436.
[30] KIM H, HONG C S. MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification[J]. CrystEngComm, 2021, 23(6): 1377-1387.
[31] ZHONG J P, ZENG Y K, YIN Z, et al. Controllable transformation from 1D Co-MOF-74 to 3D CoCO3 and Co3O4 with ligand recovery and tunable morphologies: the assembly process and boosting VOC degradation[J]. Journal of Materials Chemistry A, 2021, 9(11): 6890-6897.
[32] MA Y, WANG L A, MA J Z, et al. Investigation into the enhanced catalytic oxidation of o-xylene over MOF-derived Co3O4 with different shapes: the role of surface twofold-coordinate lattice oxygen(O2f)[J]. ACS Catalysis, 2021, 11(11): 6614-6625.
[33] FENG X B, CHEN C W, HE C, et al. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation[J]. Journal of Hazardous Materials, 2020, 383: 121143.
[34] HAN W G, DONG F, HAN W L, et al. Fabrication of homogeneous and highly dispersed CoMn catalysts for outstanding low temperature catalytic oxidation performance[J]. New Journal of Chemistry, 2019, 43(32): 12846-12857.
[35] LI Y X, HAN W, WANG R X, et al. Performance of an aliovalent-substituted CoCeOx catalyst from bimetallic MOF for VOC oxidation in air[J]. Applied Catalysis B: Environmental, 2020, 275: 119121.
[36] ZHENG Y F, ZHAO Q, SHAN C P, et al. Enhanced acetone oxidation over the CeO2/Co3O4 catalyst derived from metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28139-28147.
[37] ZHANG C L, LI J, XU J C, et al. Lattice compressive strain of Co3O4 induced by synthetic solvents promotes efficient oxidation of benzene at low temperature[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5229-5241.
[38] ZHANG W D, VALVERDE J L, GIROIR-FENDLER A. Co3O4-based catalysts for propane total oxidation: a state-of-the-art minireview[J]. Applied Catalysis B: Environmental, 2023, 337: 122908.
[39] GEORGIOU Y, SMYRNIOTI M, IOANNIDES T. Co3O4 catalysts for complete toluene oxidation: review including meta-analysis of catalyst activity data[J]. Catalysts, 2023, 13(11): 1454.
[40] LI S W, LIN Y Z, LIU G, et al. Research status of volatile organic compound(VOC)removal technology and prospect of new strategies: a review[J]. Environmental Science Processes & Impacts, 2023, 25(4): 727-740.
[41] WANG D T, YUAN C, YANG C M, et al. Recent advances in catalytic removal volatile organic compounds over metal-organic framework-derived catalysts: a review[J]. Separation and Purification Technology, 2023, 326: 124765.