[1]邓 嵩,殷 文,崔 猛,等.基于页岩油井置换条件下的环空压力分布[J].常州大学学报(自然科学版),2024,36(02):1-9.[doi:10.3969/j.issn.2095-0411.2024.02.001]
 DENG Song,YIN Wen,CUI Meng,et al.Annular pressure distribution under the displacement conditions of shale oil wells[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):1-9.[doi:10.3969/j.issn.2095-0411.2024.02.001]
点击复制

基于页岩油井置换条件下的环空压力分布()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年02期
页码:
1-9
栏目:
石油与天然气工程
出版日期:
2024-03-28

文章信息/Info

Title:
Annular pressure distribution under the displacement conditions of shale oil wells
文章编号:
2095-0411(2024)02-0001-09
作者:
邓 嵩1 殷 文1 崔 猛2 赵 飞2 王江帅1 李朝玮1 闫霄鹏1
1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.中国石油集团工程技术研究院有限公司, 北京 102206
Author(s):
DENG Song1 YIN Wen1 CUI Meng2 ZHAO Fei2 WANG Jiangshuai1 LI Chaowei1 YAN Xiaopeng1
1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; 2.CNPC Engineering Technology Research and Development Co., Ltd., Beijing 102206, China
关键词:
油基泥浆 置换现象 环空压力 页岩油
Keywords:
oil-base mud displacement phenomenon annular pressure shale oil
分类号:
TE 21
DOI:
10.3969/j.issn.2095-0411.2024.02.001
文献标志码:
A
摘要:
在置换过程中,井筒内的钻井液与井周地层流体形成了动态的流体交换现象,导致环空中流体组成发生变化,进而引起环空压力的变化。现有环空压力计算模型无法准确预测基于置换条件下的压力分布,因此建立了一种基于置换条件下页岩油井环空压力计算新模型。通过数值模拟方法分析了影响环空压力分布的各因素,结果表明:① 保持环空流入地层的排量不变,增加地层流入环空的排量,环空压力降低约为1.19 MPa/L; ② 环空压力分布曲线上会出现一个拐点,且拐点位置与置换点位置一致; ③ 随着置换流体页岩油密度的增大,环空压力升高约为0.034 MPa/(kg·m-3)。研究结果可为发生在复杂地层钻井中的置换、漏失和溢流等问题提供一定的理论参考。
Abstract:
During the displacement process, dynamic fluid exchange occurs between the fluid in the wellbore and the surrounding formation fluid, leading to changes in the composition of the annular fluid and subsequently causing variations in annular pressure. Existing models for calculating annular pressure cannot accurately predict pressure distribution based on displacement conditions. Therefore, this study establishes a novel model for calculating annular pressure in shale oil wells under displacement conditions. Through numerical simulation analysis of various influencing factors on annular pressure distribution, the results indicate: ① Maintaining a constant flow rate of annular fluid entering the formation, increasing the flow rate of formation fluid entering the annulus results in a reduction of annular pressure by approximately 1.19 MPa/L; ② An inflection point will appear on the annular pressure distribution curve, and the inflection point position is consistent with the displacement point position; ③ With the increase of shale oil density of formation fluid, the annular pressure increases by approximately 0.034 MPa/(kg·m-3). The results of this study can provide some theoretical reference for problems such as displacement, leakage and overflow in drilling in complex formations.

参考文献/References:

[1] 费红彩, 张玉华. 美国未来能源格局趋势与中国页岩气勘查现状[J]. 地球学报, 2013, 34(3): 375-380.
[2] SRIRANGAN K, AKAWI L, MOO-YOUNG M, et al. Towards sustainable production of clean energy carriers from biomass resources[J]. Applied Energy, 2012, 100: 172-186.
[3] 何立成. 胜利油田沙河街组页岩油水平井固井技术[J]. 石油钻探技术, 2022, 50(2): 45-50.
[4] 赵文彬. 大牛地气田DP43水平井组的井工厂钻井实践[J]. 天然气工业, 2013, 33(6): 60-65.
[5] LEI Q H, HE Y A, GUO Q H, et al. Technological issues in shale oil development using horizontal wells in ordos basin, China[J]. Journal of Natural Gas Geoscience, 2023, 8(6): 377-387.
[6] CAO H R, SHI J, ZHAN Z W, et al. Shale oil potential and mobility in low- to medium-maturity lacustrine shales: a case study of the Yanchang Formation shale in southeast Ordos Basin, China[J]. International Journal of Coal Geology, 2024, 282: 104421.
[7] ROCHA-VALADEZ T, MENTZER R A, HASAN A R, et al. Inherently safer sustained casing pressure testing for well integrity evaluation[J]. Journal of Loss Prevention in the Process Industries, 2014, 29: 209-215.
[8] 王江帅, 李军, 柳贡慧, 等. 变压力梯度下钻井环空压力预测[J]. 石油学报, 2020, 41(4): 497-504.
[9] 张锐尧, 肖平, 朱忠喜, 等. 基于非平衡相间传质的多梯度钻井井底压力预测[J]. 石油机械, 2023, 51(9): 9-17.
[10] 张锐尧, 李军, 柳贡慧. 深水变梯度钻井井筒压力预测模型的研究[J]. 石油科学通报, 2022, 7(4): 564-575.
[11] 李帅, 练章华, 丁亮亮, 等. 多因素耦合作用下的气井持续环空压力预测模型[J]. 中国安全科学学报, 2023, 33(2): 166-172.
[12] 康毅力, 杨斌, 游利军, 等. 油基钻井完井液对页岩储层保护能力评价[J]. 天然气工业, 2013, 33(12): 99-104.
[13] ZHAO X, QIU Z S, XU J G, et al. Flat-rheology oil-based drilling fluid for deep water drilling[J]. International Journal of Heat and Technology, 2017, 35(1): 19-24.
[14] 邵宁, 李子钰, 于培志. 高密度油基钻井液体系优选及其在页岩气水平井的应用[J]. 探矿工程(岩土钻掘工程), 2019, 46(8): 30-35.
[15] QIN B B, WANG Y D, LUO C Z, et al. Research on high temperature and high density white oil based drilling fluid and its application in well 201H7-6[J]. Open Journal of Yangtze Oil and Gas, 2019, 4(3): 174-182.

备注/Memo

备注/Memo:
收稿日期: 2024-01-08。
基金项目: 中国石油-常州大学创新联合体资助项目(2021DQ06); 江苏省高等学校基础科学(自然科学)研究面上项目(22KJD430001)。
作者简介: 邓嵩(1989—), 男, 河南南阳人, 博士, 教授。E-mail: dengsong@cczu.edu.cn
更新日期/Last Update: 1900-01-01