[1]钱 坤,窦祥骥,唐君实,等.多元热流体发生器不同燃料燃烧工况优化[J].常州大学学报(自然科学版),2024,36(02):31-38.[doi:10.3969/j.issn.2095-0411.2024.02.004]
 QIAN Kun,DOU Xiangji,TANG Junshi,et al.Optimization of different fuel combustion conditions of multi-component thermal fluid generator[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):31-38.[doi:10.3969/j.issn.2095-0411.2024.02.004]
点击复制

多元热流体发生器不同燃料燃烧工况优化()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年02期
页码:
31-38
栏目:
石油与天然气工程
出版日期:
2024-03-28

文章信息/Info

Title:
Optimization of different fuel combustion conditions of multi-component thermal fluid generator
文章编号:
2095-0411(2024)02-0031-08
作者:
钱 坤12 窦祥骥12 唐君实23 郭二鹏23 陆佳昊1
1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.中国石油-常州大学创新联合体, 江苏 常州 213164; 3.中国石油勘探开发研究院, 北京 100083
Author(s):
QIAN Kun12 DOU Xiangji12 TANG Junshi23 GUO Erpeng23 LU Jiahao1
1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; 2.CNPC-CZU Innovation Alliance, Changzhou 213164, China;3.Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
关键词:
多元热流体 燃烧 柴油 天然气 煤粉
Keywords:
multi-component thermal fluid combustion diesel natural gas pulverized coal
分类号:
TE 357.4
DOI:
10.3969/j.issn.2095-0411.2024.02.004
文献标志码:
A
摘要:
对稠油多元热流体发生器典型燃烧组分进行分析是注入能力评价、采收率预测、多次吞吐优化的关键。研究利用Fluent软件对多元热流体发生器进行三维仿真建模,模拟发生器不同工况下温度场和流场的分布。结果表明,不同的多元热流体发生器需要根据不同的燃料设计相应的燃料喷嘴,以促进燃料充分燃烧,提高热效率。当柴油作为燃料时,燃油喷嘴需要与空气喷嘴相匹配,以加强其雾化效果。天然气是多元热流体发生器的首选燃料,但在燃料供应条件有限的情况下,液态柴油和气相天然气可以相互替代,作为燃料在同一发生器中使用。当煤粉作为燃料时,即使有过量氧气,也难以充分燃烧。但是,在综合考虑成本或缺乏其他燃料时,可通过优化燃料喷嘴设计,最终实现煤粉在多元热流体发生器中的高效燃烧。
Abstract:
The measurement and analysis of typical combustion components of multi-component thermal fluid generator in heavy oil injection is the key to the evaluation of injection capacity, recovery efficiency prediction, multi-cycle injection optimization. In this study, three-dimensional simulation modeling of multi-component thermal fluid generator was carried out by Fluent to simulate the distribution of temperature field and flow field under different working conditions of fuel combustion chambers. The results show that corresponding fuel nozzles for different multicomponent thermal fluid generator need to be designed according to different fuel flow patterns to facilitate full combustion of fuel and improve thermal efficiency. When diesel is used as fuel, the fuel nozzle needs to be matched with the air nozzle to strengthen its atomization effect. Natural gas is preferred as fuel for multicomponent thermal fluid generators. And if fuel supply conditions are limited, the diesel in liquid phase and natural gas in gas phase could substitute each other as fuel in the same multicomponent thermal fluid generator. When pulverized coal is used as fuel, it is difficult to fully burn even if there is excessive O2. However, when considering cost or lack of other fuels, the fuel nozzle design can be optimized to finally realize the efficient combustion of pulverized coal in the multi-component thermal fluid generator.

参考文献/References:

[1] DONG X H, LIU H Q, CHEN Z X, et al. Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection[J]. Applied Energy, 2019, 239: 1190-1211.
[2] DONG X H. Investigation of the features about steam breakthrough in heavy oil reservoirs during steam injection[J]. The Open Petroleum Engineering Journal, 2012, 5(1): 1-6.
[3] HUANG S J, CAO M, CHENG L S. Experimental study on the mechanism of enhanced oil recovery by multi-thermal fluid in offshore heavy oil[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1074-1084.
[4] TANG X, MA Y, SUN T. Study and field test of multi-component thermal fluid huff and puff process of heavy oil offshore[J]. China Offshore Oil and Gas, 2011, 23(3): 185-188.
[5] ZHONG L G, WANG C, LIU Y G, et al. Field application of a modular multiple thermal fluid generator for heavy oil recovery[J]. Journal of Petroleum Exploration and Production Technology, 2022, 12(1): 227-237.
[6] 冯祥, 李敬松, 杨兵, 等. 海上稠油多元热流体吞吐各组分增产优化设计研究[J]. 重庆科技学院学报(自然科学版), 2018, 20(4): 28-32.
[7] 刘东, 苏彦春, 陈建波, 等. 注多元热流体吞吐转驱替三维物模及数值实验[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 137-146.
[8] LIU D, HU T, PAN G, et al. Comparison of the mining effect of multi-component thermal fluid huff and steam huff and puff at sea[J]. Special Oil & Gas Reservoirs, 2015, 22(4): 118-120.
[9] HOU J, WEI B, DU Q J, et al. Production prediction of cyclic multi-thermal fluid stimulation in a horizontal well[J]. Journal of Petroleum Science and Engineering, 2016, 146: 949-958.
[10] YANG Y Q, GUO J X, CHENG Z F, et al. New composite viscosity reducer with both asphaltene dispersion and emulsifying capability for heavy and ultraheavy crude oils[J]. Energy & Fuels, 2017, 31(2): 1159-1173.
[11] 蔡小舒, 周骛, 杨荟楠, 等. 燃烧与流场在线测量诊断方法研究进展[J]. 实验流体力学, 2014, 28(1): 12-20.
[12] SENTKO M M, SCHULZ S, STELZNER B, et al. Determination of temperature and water-concentration in fuel-rich oxy-fuel methane flames applying TDLAS[J]. Combustion and Flame, 2020, 214: 336-345.
[13] 刘楠楠, 戚恒辰, 徐慧, 等. 油层厚度对井模型下蒸汽辅助重力驱稠油开发的影响[J]. 常州大学学报(自然科学版), 2023, 35(6): 82-89.
[14] 霍进, 吕柏林, 杨兆臣, 等. 稠油油藏多元介质复合蒸汽吞吐驱油机理研究[J]. 特种油气藏, 2020, 27(2): 93-97.
[15] 王少华, 孙永涛, 王梦莹, 等. 多元热流体热采稠油乳状液的形成及稳定性研究[J]. 石油化工高等学校学报, 2014, 27(4): 66-71.
[16] 郝宏达, 侯吉瑞, 郭文敏, 等. 强水窜油藏凝胶/CO2复合吞吐三维物理模拟[J]. 常州大学学报(自然科学版), 2023, 35(5): 67-75.

相似文献/References:

[1]赵 静,文 庆,梁启凡,等.多元热流体吞吐开发稠油乳状液稳定性机理[J].常州大学学报(自然科学版),2024,36(02):10.[doi:10.3969/j.issn.2095-0411.2024.02.002]
 ZHAO Jing,WEN Qing,LIANG Qifan,et al.Stability mechanism of heavy oil emulsion during cyclic multi-thermal fluids injection process[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):10.[doi:10.3969/j.issn.2095-0411.2024.02.002]
[2]姜志生,徐 慧,何岩峰,等.多元热流体开发稠油出砂机理及规律[J].常州大学学报(自然科学版),2024,36(02):48.[doi:10.3969/j.issn.2095-0411.2024.02.006]
 JIANG Zhisheng,XU Hui,HE Yanfeng,et al.Mechanism and law of heavy oil sand production in multi-component thermal fluid development[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):48.[doi:10.3969/j.issn.2095-0411.2024.02.006]
[3]汪士凯,何岩峰,郭二鹏,等.多元热流体开发效果模拟及影响因素关联分析[J].常州大学学报(自然科学版),2024,36(03):18.[doi:10.3969/j.issn.2095-0411.2024.03.003]
 WANG Shikai,HE Yanfeng,GUO Erpeng,et al.Simulation of multi-component thermal fluid development effect and correlation analysis of influencing factors[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):18.[doi:10.3969/j.issn.2095-0411.2024.03.003]

备注/Memo

备注/Memo:
收稿日期: 2024-01-16。
基金项目: 中国石油-常州大学创新联合体资助项目(2021DQ06)。
作者简介: 钱坤(1990—), 男, 江苏高邮人, 博士, 讲师。E-mail: qiankun@cczu.edu.cn
更新日期/Last Update: 1900-01-01