[1]宫闻浩,李朝玮,李 栋,等.基于异质集成的井漏预警模型[J].常州大学学报(自然科学版),2024,36(02):39-47.[doi:10.3969/j.issn.2095-0411.2024.02.005]
 GONG Wenhao,LI Chaowei,LI Dong,et al.Lost circulation early warning model based on heterogeneous integration[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):39-47.[doi:10.3969/j.issn.2095-0411.2024.02.005]
点击复制

基于异质集成的井漏预警模型()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年02期
页码:
39-47
栏目:
石油与天然气工程
出版日期:
2024-03-28

文章信息/Info

Title:
Lost circulation early warning model based on heterogeneous integration
文章编号:
2095-0411(2024)02-0039-09
作者:
宫闻浩1 李朝玮1 李 栋1 邓 嵩1 徐明华2 赵 飞3
1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.常州大学 计算机与人工智能学院, 江苏 常州 213164; 3.中国石油集团工程技术研究院有限公司, 北京 102206
Author(s):
GONG Wenhao1 LI Chaowei1 LI Dong1 DENG Song1 XU Minghua2 ZHAO Fei3
1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; 2.School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China; 3.CNPC Engineering Technology Research and Development Co., Ltd., Beijing 102206, China
关键词:
井漏 异质集成模型 随机森林 智能预警
Keywords:
lost circulation heterogeneous integrated model random forest intelligent early warning
分类号:
TE 28
DOI:
10.3969/j.issn.2095-0411.2024.02.005
文献标志码:
A
摘要:
钻井井漏事故具有突发性和难以控制的特点。因此,迫切需要建立一种有效的井漏预测方法。将随机森林、支持向量机和反向传播神经网络模型相结合的异质积分器Stacking应用于青海省柴达木盆地英西地区。首先对目标区块的数据集进行处理,运用灰色关联对数据进行相关性分析,选择其中10个相关性高的参数,后设置两层堆叠集成,第一层选择随机森林、支持向量机和BP神经网络模型作为基础学习器,第二层选择逻辑回归模型作为元学习器。结果表明,异质集成模型提高了预测精度(0.981的准确率、0.970的精确率、0.963的召回率和0.960的F1分数),克服了同质分类器的局限性。强调了综合井漏预警预报中考虑多种地质因素的重要性。
Abstract:
Drilling lost circulation accidents are characterized by abruptness and difficulty in control. Therefore, it is urgent to establish an effective lost circulation prediction. In this study, Stacking, a heterogeneous integrator combined with stochastic forest support vector machine and back propagation neural network model, was applied to Yingxi area of Qaidam Basin, Qinghai Province. Firstly, the data set of the target block is processed, and ten parameters with high correlation are selected by grey correlation, and then two layers of stacking integration are set up. The first layer selects random forest, support vector machine and back propagation neural network model as the basic learning device, and the second layer selects logistic regression model as the meta-learning device. The results show that the heterogeneous ensemble model improves the prediction accuracy(0.981 accuracy, 0.970 precision, 0.963 recall, and 0.960 F1 score)and overcomes the limitations of homogeneous classifiers. The importance of considering various geological factors in comprehensive lost circulation early warning and prediction is emphasized.

参考文献/References:

[1] 徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法: 以陕西省为例[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1214-1222.
[2] BUI D T, TUAN T A, KLEMPE H, et al. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 2016, 13(2): 361-378.
[3] 刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1085-1091.
[4] PRADHAN B, LEE S. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models[J]. Environmental Earth Sciences, 2010, 60(5): 1037-1054.
[5] BOURENANE H, GUETTOUCHE M S, BOUHADAD Y, et al. Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods[J]. Arabian Journal of Geosciences, 2016, 9(2): 154.
[6] FANG Z C, WANG Y, PENG L, et al. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping[J]. International Journal of Geographical Information Science, 2021, 35(2): 321-347.
[7] PHAM B T, TIEN BUI D, PRAKASH I. Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study[J]. Geotechnical and Geological Engineering, 2017, 35(6): 2597-2611.
[8] YOUSSEF A M, POURGHASEMI H R, POURTAGHI Z S, et al. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides, 2016, 13(5): 839-856.
[9] 崔阳阳, 邓念东, 曹晓凡, 等. 基于集成学习的地质灾害危险性评价[J]. 水力发电, 2020, 46(10): 36-41.
[10] 苏刚, 秦胜伍, 乔双双, 等. 基于Stacking集成学习的泥石流易发性评价: 以四川省雅江县为例[J]. 世界地质, 2021, 40(1): 175-184.
[11] TING K M, WITTEN I H. Issues in stacked generalization[J]. Journal of Artificial Intelligence Research, 1999, 10: 271-289.
[12] DENG S, PEI C Y, YAN X P, et al. Lost circulation prediction method based on an improved fruit fly algorithm for support vector machine optimization[J]. ACS Omega, 2023, 8(36): 32838-32847.
[13] SHAWE-TAYLOR J, SUN S L. A review of optimization methodologies in support vector machines[J]. Neurocomputing, 2011, 74(17): 3609-3618.
[14] YACOUBY R, AXMAN D. Probabilistic extension of precision, recall, and F1 score for more thorough evaluation of classification models[C]//Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. Stroudsburg: Association for Computational Linguistics, 2020.

相似文献/References:

[1]罗俊如,丁言瑞,徐明华,等.基于深度AUC最大化算法的井漏风险预测[J].常州大学学报(自然科学版),2024,36(03):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]
 LUO Junru,DING Yanrui,XU Minghua,et al.Lost circulation prediction based on deep AUC maximization[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]

备注/Memo

备注/Memo:
收稿日期: 2024-01-08。
基金项目: 中国石油-常州大学创新联合体资助项目(2021DQ06); 江苏省高等学校基础科学(自然科学)研究面上项目(22KJD430001)。
作者简介: 宫闻浩(2001—), 男, 安徽阜阳人, 硕士生。通信联系人: 李朝玮(1987—), E-mail: chw25@163.com
更新日期/Last Update: 1900-01-01