参考文献/References:
[1] 徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法: 以陕西省为例[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1214-1222.
[2] BUI D T, TUAN T A, KLEMPE H, et al. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 2016, 13(2): 361-378.
[3] 刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1085-1091.
[4] PRADHAN B, LEE S. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models[J]. Environmental Earth Sciences, 2010, 60(5): 1037-1054.
[5] BOURENANE H, GUETTOUCHE M S, BOUHADAD Y, et al. Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods[J]. Arabian Journal of Geosciences, 2016, 9(2): 154.
[6] FANG Z C, WANG Y, PENG L, et al. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping[J]. International Journal of Geographical Information Science, 2021, 35(2): 321-347.
[7] PHAM B T, TIEN BUI D, PRAKASH I. Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study[J]. Geotechnical and Geological Engineering, 2017, 35(6): 2597-2611.
[8] YOUSSEF A M, POURGHASEMI H R, POURTAGHI Z S, et al. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides, 2016, 13(5): 839-856.
[9] 崔阳阳, 邓念东, 曹晓凡, 等. 基于集成学习的地质灾害危险性评价[J]. 水力发电, 2020, 46(10): 36-41.
[10] 苏刚, 秦胜伍, 乔双双, 等. 基于Stacking集成学习的泥石流易发性评价: 以四川省雅江县为例[J]. 世界地质, 2021, 40(1): 175-184.
[11] TING K M, WITTEN I H. Issues in stacked generalization[J]. Journal of Artificial Intelligence Research, 1999, 10: 271-289.
[12] DENG S, PEI C Y, YAN X P, et al. Lost circulation prediction method based on an improved fruit fly algorithm for support vector machine optimization[J]. ACS Omega, 2023, 8(36): 32838-32847.
[13] SHAWE-TAYLOR J, SUN S L. A review of optimization methodologies in support vector machines[J]. Neurocomputing, 2011, 74(17): 3609-3618.
[14] YACOUBY R, AXMAN D. Probabilistic extension of precision, recall, and F1 score for more thorough evaluation of classification models[C]//Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. Stroudsburg: Association for Computational Linguistics, 2020.
相似文献/References:
[1]罗俊如,丁言瑞,徐明华,等.基于深度AUC最大化算法的井漏风险预测[J].常州大学学报(自然科学版),2024,36(03):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]
LUO Junru,DING Yanrui,XU Minghua,et al.Lost circulation prediction based on deep AUC maximization[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):34.[doi:10.3969/j.issn.2095-0411.2024.03.005]