[1]朱飞昊,王月盈,黄安麒,等.油品火灾改性干水材料灭火效能试验[J].常州大学学报(自然科学版),2024,36(02):61-74.[doi:10.3969/j.issn.2095-0411.2024.02.007]
 ZHU Feihao,WANG Yueying,HUANG Anqi,et al.Experimental study on fire extinguishing efficiency of modified dry water material for oil fires[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):61-74.[doi:10.3969/j.issn.2095-0411.2024.02.007]
点击复制

油品火灾改性干水材料灭火效能试验()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年02期
页码:
61-74
栏目:
安全工程
出版日期:
2024-03-28

文章信息/Info

Title:
Experimental study on fire extinguishing efficiency of modified dry water material for oil fires
文章编号:
2095-0411(2024)02-0061-14
作者:
朱飞昊 王月盈 黄安麒 王 祥 丁唯一
常州大学 安全科学与工程学院, 江苏 常州 213164
Author(s):
ZHU Feihao WANG Yueying HUANG Anqi WANG Xiang DING Weiyi
School of Safety Science and Engineering, Changzhou University, Changzhou 213164, China
关键词:
干水 油品火灾 灭火剂 核壳结构 灭火效能
Keywords:
dry water oil fires extinguishing agents core-shell structure fire extinguishing efficiency
分类号:
TE 88
DOI:
10.3969/j.issn.2095-0411.2024.02.007
文献标志码:
A
摘要:
针对油品泄漏火灾,设计并制备了4种不同组分的改性干水样品(DW),利用光学显微镜、激光粒度仪和热重分析仪进行表征分析,并搭建灭火实验平台,研究不同组分的DW对油品火灾的灭火效能。结果表明,制备的DW具备稳定的核壳结构,DW内部的含水量可达80%~90%,灭火组分和凝胶剂能够增大体积密度,有利于灭火剂到达火焰根部,提高灭火效能。灭火试验中,纯水DW1的灭火时间为49 s,加入草酸钾和凝胶剂的DW4的灭火时间为17 s,灭火时间减少了65.3%,充分发挥了物理和化学共同抑制燃烧的作用,有效缩短了灭火时间。研究结果对于干水灭火剂在石油化工领域的推广使用具有重要意义。
Abstract:
Four types of modified dry water samples(DW)with different components were developed and ready for use in oil leakage incidents. The fire extinguishing experiment platform was constructed to investigate the fire extinguishing effectiveness of several DW groups on oil fires. The characterization and analysis were performed using an optical microscope, a laser particle size analyzer, and a thermogravimetric analyzer. The findings demonstrate that the prepared DW has a robust core-shell structure and its interior water content can range from 80% to 90%. The volume density of the fire extinguishing agents and gels can be increased, which helps the agent reach the flame root more effectively and boost the efficacy of fire extinguishing. In the fire extinguishing test, the pure water DW1 fire is extinguished in 49 s, whereas the fire is extinguished in 17 s when DW4 is added with potassium oxalate and gel agent. This represents a 65.3% reduction in fire extinguishing time, fully utilizing the role of physical and chemical inhibition and significantly cutting down on fire extinguishing time. The findings have significant implications for the petrochemical industry's use of dry water extinguishing agents.

参考文献/References:

[1] YIN X Y, LIU T, LIU Y C, et al. Feasibility study of fine water mist applied to cold storage fire protection[J]. Processes, 2022, 10(8): 1533.
[2] LIU Y C, JIANG J C, HUANG A C. Experimental study on extinguishing oil fire by water mist with polymer composite additives[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(11): 4811-4822.
[3] DIETER S, FRANZ-THEO S, HELMUT B. Predominantly aqueous compositions in a fluffy powdery form approximating powdered solids behavior and process for forming same: US3393155[P]. 1968-07-16.
[4] LIU T, YIN X Y, LIU Y C, et al. Influence of water mist temperature approach on fire extinguishing effect of different pool fires[J]. Processes, 2022, 10(8): 1549.
[5] GUO X X, PAN X H, ZHANG L J, et al. The inhibitory combustion reaction performance and tail gas analysis of composite ultra-fine dry powder extinguishing agent containing different additives[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104153.
[6] WANG Y, ZHU G Q, CHAI G Q, et al. Experimental study on the effect of release pressure on the extinguishing efficiency of dry water[J]. Case Studies in Thermal Engineering, 2021, 26: 101177.
[7] FAN R J, JIANG Y, JIANG H R. Experimental and theoretical investigation of dry-water containing phosphoric acid for new fire suppressant[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104399.
[8] JIANG H R, JIANG Y, FAN R J, et al. A bio-resourced and superhydrophobic dry water extinguishing agent for pool fire based on phytic acid and silicon[J]. Fire Technology, 2022: 1-22.
[9] ZOU Y Y, LI K Y, YUAN B H, et al. Inspiration from a thermosensitive biomass gel: a novel method to improving the stability of core-shell ‘dry water' fire extinguishing agent[J]. Powder Technology, 2019, 356: 383-390.
[10] CHEN X F, FAN A, YUAN B H, et al. Renewable biomass gel reinforced core-shell dry water material as novel fire extinguishing agent[J]. Journal of Loss Prevention in the Process Industries, 2019, 59: 14-22.
[11] LIU Z Q, ZHOU G, SONG S Z, et al. Synthesis and characteristic analysis of coal dust explosion suppressant based on surface modification of ammonium dihydrogen phosphate with methyl hydrogen-containing silicone oil[J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104059.
[12] LI Q N, TANG G, CAI B C, et al. Effect of silicone oil additive on swelling stress alleviation in the metal hydride reactor[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10308-10314.
[13] NI X M, ZHANG S G, ZHENG Z, et al. Application of water@silica core-shell particles for suppressing gasoline pool fires[J]. Journal of Hazardous Materials, 2018, 341: 20-27.
[14] ZHANG T W, LIU H, HAN Z Y, et al. Covering effect, size-fractionated, and stability of dry water with seawater@nano-SiO2: electrochemical methods[J]. Materials Chemistry and Physics, 2022, 292: 126777.
[15] HAN Z Y, ZHANG Y P, DU Z M, et al. New-type gel dry-water extinguishants and its effectiveness[J]. Journal of Cleaner Production, 2017, 166: 590-600.
[16] SANTOMASO A, LAZZARO P, CANU P. Powder flowability and density ratios: the impact of granules packing[J]. Chemical Engineering Science, 2003, 58(13): 2857-2874.
[17] WU H, JIANG J C, HUANG A C, et al. Effect of emulsifiers on the thermal stability of firework propellants[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(11): 4959-4967.
[18] YANG N, JIANG J C, HUANG A C, et al. Thermokinetic model-based experimental and numerical investigation of the thermal hazards of nitrification waste[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104836.
[19] ZHOU H L, LIU Y C, TANG Y, et al. Utilizing thermokinetic and calorimetric methods to assess the impact of an initiator on the thermal hazard of diallyl phthalate[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(11): 5017-5027.
[20] LI Z P, HUANG A C, TANG Y, et al. Thermokinetic prediction and safety evaluation for toluene sulfonation process and product using calorimetric technology[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(21): 12177-12186.
[21] ESCALANTE J, CHEN W H, TABATABAEI M, et al. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: a review of thermogravimetric analysis(TGA)approach[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112914.
[22] KAMER D D A, GUMUS T, PALABIYIK I, et al. The fermentation-based production of gellan from rice bran and the evaluation of various qualitative properties of gum[J]. International Journal of Biological Macromolecules, 2022, 207: 841-849.
[23] ZHAO J C, FU Y Y, YIN Z T, et al. Preparation of hydrophobic and oleophobic fine sodium bicarbonate by gel-sol-gel method and enhanced fire extinguishing performance[J]. Materials & Design, 2020, 186: 108331.
[24] DEVI S, JANANAKUMAR D. Structural, optical, spectroscopic and thermal investigations on novel semi-organic nonlinear optical material-potassium boro-oxalate single crystal[J]. Chinese Journal of Physics, 2020, 68: 339-347.
[25] 姜帅, 周宁, 刘晅亚, 等. LNG池火燃烧危害与超细干粉紧急抑制效能研究[J]. 常州大学学报(自然科学版), 2016, 28(3): 70-74.
[26] 夏群, 徐晓岩, 朱平华. 气凝胶复合SCC隧道火灾剥落与强度退化研究[J]. 常州大学学报(自然科学版), 2017, 29(6): 63-68.
[27] 黄勇, 张玉雯, 王项链, 等. 甲苯磺化反应放热及其产物热安全性研究[J]. 常州大学学报(自然科学版), 2023, 35(1): 43-47.

备注/Memo

备注/Memo:
收稿日期: 2024-01-13。
基金项目: 国家自然科学基金资助项目(52204203); 中国石油-常州大学创新联合体资助项目(2021DQ06)。
作者简介: 朱飞昊(1991—), 男, 江苏徐州人, 博士, 讲师。E-mail: zhufeihao@cczu.edu.cn
更新日期/Last Update: 1900-01-01