[1]张延兵,张 涛,孙佶沛,等.含点蚀缺陷高钢级弯管的极限承载能力研究[J].常州大学学报(自然科学版),2024,36(02):75-84.[doi:10.3969/j.issn.2095-0411.2024.02.008]
 ZHANG Yanbing,ZHANG Tao,SUN Jipei,et al.Research on the ultimate bearing capacity of high-strength steel elbows with pitting defects[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):75-84.[doi:10.3969/j.issn.2095-0411.2024.02.008]
点击复制

含点蚀缺陷高钢级弯管的极限承载能力研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年02期
页码:
75-84
栏目:
安全工程
出版日期:
2024-03-28

文章信息/Info

Title:
Research on the ultimate bearing capacity of high-strength steel elbows with pitting defects
文章编号:
2095-0411(2024)02-0075-10
作者:
张延兵1 张 涛2 孙佶沛3 赵永涛3 张 颖2
1.江苏省特种设备安全监督检验研究院, 江苏 南京210000; 2.常州大学 安全科学与工程学院, 江苏 常州213164; 3.中国石油集团安全环保技术研究院有限公司, 北京102206
Author(s):
ZHANG Yanbing1 ZHANG Tao2 SUN Jipei3 ZHAO Yongtao3 ZHANG Ying2
1.Jiangsu Institute of Safety Supervision and Inspection of Special Equipment, Nanjing 210000,China; 2.School of Safety Science and Engineering, Changzhou University,Changzhou 213164, China; 3.CNPC Safety and Environmental Protection Technology Research Institute Co., Ltd., Beijing 102206,China
关键词:
点蚀 弯管 极限内压 有限元分析 等效应力
Keywords:
pitting defects elbows ultimate internal pressure finite element analysis equivalent stress
分类号:
TE 832
DOI:
10.3969/j.issn.2095-0411.2024.02.008
文献标志码:
A
摘要:
在油气管道运输过程中,由于荷载和腐蚀介质等因素,弯管相比直管更容易发生腐蚀。以点蚀缺陷为研究对象,建立含有点蚀缺陷弯管的三维非线性有限元模型,进一步分析了点蚀缺陷的位置、缺陷的几何形状和管材性能等因素对弯管极限内压的影响。研究结果表明,含点蚀缺陷弯管的极限内压受缺陷相对位置的影响,当缺陷位于弯管的内拱时,弯管的极限内压最小; 含点蚀缺陷弯管的极限内压同样受缺陷尺寸的影响,极限内压随点蚀缺陷深度增加而减小,随点蚀缺陷半径增大而减小; 管道尺寸、管道弯曲半径和管材性能等敏感因素也会对管道极限内压产生影响。研究结论对于含缺陷弯管的安全评定有一定的参考价值。
Abstract:
In the process of oil and gas pipeline transportation, elbows are more prone to corrosion compared to straight pipes due to the factors such as load and corrosive media. This article takes pitting defects as the research object. A three-dimensional(3D)nonlinear finite element(FE)model of elbows with pitting defects was established. It further analyzes the influence of factors such as the relative position of defects, the geometric size of defects, and the material properties of elbows. The research results indicate that the ultimate internal pressure of the elbow with pitting defects is influenced by the relative position of the defects. When the defects are located at the inner arch of the elbow, the ultimate internal pressure of the elbow is the smallest. Moreover, the ultimate internal pressure of the elbow with pitting defects is also affected by the size of the defect. The ultimate internal pressure decreases with increase of the depth of the pitting defects and the radius of the pitting defects. Sensitive factors such as pipeline size, pipeline bending radius, and material properties can also have an impact on the ultimate internal pressure of pipelines. Therefore, the conclusions obtained have certain reference value for the safety assessment of elbows with pitting defects.

参考文献/References:

[1] 郭茶秀, 王学生, 王定标, 等. 复杂载荷下无缺陷弯管的塑性极限载荷[J]. 压力容器, 2001, 18(4): 8-11.
[2] 胡炳涛, 朱荣涛, 李超永, 等. 弯管冲蚀失效模拟研究及影响因素分析[J]. 常州大学学报(自然科学版), 2019, 31(2): 27-34.
[3] 崔铭伟, 曹学文. 不同钢级腐蚀管道剩余强度分析方法的对比[J]. 油气储运, 2012, 31(7): 486-490, 93.
[4] 杨燕华, 顾晓婷, 张旭, 等. 高级X100输气管道含双点腐蚀缺陷的剩余强度研究[J]. 腐蚀与防护, 2021, 42(4): 48-53.
[5] 李招辉, 王琪, 陆晓峰, 等. 含缺陷压力管道极限承载能力分析[J]. 化工机械, 2023, 50(2): 140-147.
[6] KIM J W, LEE S H, PARK C Y. Experimental evaluation of the effect of local wall thinning on the failure pressure of elbows[J]. Nuclear Engineering and Design, 2009, 239(12): 2737-2746.
[7] AN J H, HONG S P, KIM Y J, et al. Elastic stresses for 90° elbows under in-plane bending[J]. International Journal of Mechanical Sciences, 2011, 53(9): 762-776.
[8] LEE G H, SEO J K, PAIK J K. Condition assessment of damaged elbow in subsea pipelines[J]. Ships and Offshore Structures, 2017, 12(1): 135-151.
[9] 陈钢, 张传勇, 刘应华. 内压和面内弯矩作用下含局部减薄弯头塑性极限载荷的有限元分析[J]. 工程力学, 2005, 22(2): 43-49.
[10] 杨秀娟, 安瑜, 闫相祯. 含局部减薄弯头的非线性有限元分析[J]. 广西大学学报(自然科学版), 2009, 34(1): 45-49.
[11] 张藜, 柳曾典. 内压作用下局部减薄弯头的极限载荷及其安全评定[J]. 压力容器, 2000, 17(4): 44-48.
[12] 刘啸奔, 王宝栋, 张东, 等. 地表载荷作用下含缺陷燃气管道安全评价[J]. 中国安全科学学报, 2021, 31(10): 127-135.
[13] 邓记松. 单元与网格密度对有限元分析结果的影响[J]. 石油化工设备技术, 2017, 38(1): 12-15.
[14] 方锡武, 邓正平, 蒋麒麟. 多尺度六面体单元网格连接方法研究[J]. 计算力学学报, 2022, 39(1): 49-56.
[15] 刘啸奔, 张宏, 李勐, 等. 含腐蚀缺陷N80油管的剩余强度分析[J]. 腐蚀与防护, 2016, 37(11): 913-916, 920.
[16] BAO S Y, QIN Z X, ZHU J, et al. Quickly analyze the limit load of thinning defect elbows with elastic modulus adjustment method[J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104516.
[17] SKELTON R P, MAIER H J, CHRIST H J. The Bauschinger effect, Masing model and the Ramberg-Osgood relation for cyclic deformation in metals[J]. Materials Science and Engineering: A, 1997, 238(2): 377-390.
[18] 窦志家, 祝哮, 孙巍, 等. 2024-O铝合金型材Ramberg-Osgood本构模型构建与方法研究[J]. 有色金属加工, 2020, 49(4): 51-54.
[19] 张慧敏, 潘家祯. 含体积型缺陷管线的极限载荷分析[J]. 工程力学, 2009, 26(8): 20-25.
[20] KIM J W, YOON M S, PARK C Y. The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows[J]. Nuclear Engineering and Design, 2013, 265: 174-183.
[21] ZHANG S L, ZHOU W X. Development of a burst capacity model for corroded pipelines considering corrosion defect width and a revised Folias factor equation[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103812.
[22] MONDAL B C, DHAR A S. Burst pressure of corroded pipelines considering combined axial forces and bending moments[J]. Engineering Structures, 2019, 186: 43-51.
[23] SHUAI Y, WANG X H, CHENG Y F. Buckling resistance of an X80 steel pipeline at corrosion defect under bending moment[J]. Journal of Natural Gas Science and Engineering, 2021, 93: 104016.
[24] 魏化中, 陈文霞, 舒安庆. 含点蚀缺陷燃气管道弯管的塑性极限载荷分析[J]. 机械, 2008, 35(3): 11-12, 22.
[25] ANDERSON T L, OSAGE D A. API 579: a comprehensive fitness-for-service guide[J]. International Journal of Pressure Vessels and Piping, 2000, 77(14/15): 953-963.

备注/Memo

备注/Memo:
收稿日期: 2024-01-14。
基金项目: 中国石油-常州大学创新联合体资助项目(2021DQ06)。
作者简介: 张延兵(1981—), 男, 河南南阳人, 硕士, 高级工程师。通信联系人: 张颖(1972—), E-mail: aezy163@163.com
更新日期/Last Update: 1900-01-01