[1]胡 静,梁 硕,卢阳阳,等.离子氮碳氧三元共渗对45钢耐蚀耐磨性能的影响与机理研究[J].常州大学学报(自然科学版),2024,36(03):1-9.[doi:10.3969/j.issn.2095-0411.2024.03.001]
 HU Jing,LIANG Shuo,LU Yangyang,et al.Effect of plasma oxynitrocarburising on corrosion and wear resistance for 45 steel and mechanism analysis[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):1-9.[doi:10.3969/j.issn.2095-0411.2024.03.001]
点击复制

离子氮碳氧三元共渗对45钢耐蚀耐磨性能的影响与机理研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年03期
页码:
1-9
栏目:
材料科学与工程
出版日期:
2024-05-28

文章信息/Info

Title:
Effect of plasma oxynitrocarburising on corrosion and wear resistance for 45 steel and mechanism analysis
文章编号:
2095-0411(2024)03-0001-09
作者:
胡 静123 梁 硕13 卢阳阳13 王海强13 陈立立4 安旭龙13 魏 伟13
1.江苏省材料表面科学与技术重点实验室常州大学, 江苏 常州 213164; 2.常州大学 怀德学院, 江苏 靖江 214500; 3.材料科学与工程国家级实验教学示范中心常州大学, 江苏 常州 213164; 4.山东宇能机械股份有限公司, 山东 枣庄 277000
Author(s):
HU Jing123 LIANG Shuo13 LU Yangyang13 WANG Haiqiang13 CHEN Lili4 AN Xulong13 WEI Wei13
1.Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, China; 2.Huaide College, Changzhou University, Jingjiang 214500, China; 3.National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China;4.Shandong Yuneng Machinery Co., Ltd., Zaozhuang 277000, China
关键词:
离子氮碳氧三元共渗技术 QPQ技术 氧化膜 耐磨性 耐蚀性
Keywords:
plasma oxynitrocarburising quench-polish-quench oxide film wear resistance corrosion resistance
分类号:
TG 178
DOI:
10.3969/j.issn.2095-0411.2024.03.001
文献标志码:
A
摘要:
研究选择45钢为原材料,分别采用绿色环保离子氮碳氧三元共渗技术(Plasma oxynitrocarburising, PNCO)和传统淬火-抛光-淬火技术(Quench-polish-quench, QPQ)进行表面改性,并利用SEM,XRD,摩擦磨损试验机,浸泡腐蚀实验对比分析2种方法的改性效果,包括截面显微组织、表面形貌、物相、耐磨性和耐蚀性。结果表明,PNCO处理后,获得了与QPQ处理相同的多层次渗层结构,由表层1~2μm氧化膜及次表层化合物层和有效硬化层构成,且PNCO处理后表面氧化膜成纳米结构,化合物层比QPQ更加致密。同时,PNCO处理后,磨损率和腐蚀失重率分别为1.39 mg/(N·m)和0.39%,耐磨耐蚀性均略优于QPQ,为研究绿色高效高性能表面改性技术提供了可行的研究方向。
Abstract:
To explore an environmental friendly and efficient surface modification technology, PNCO(Plasma oxynitrocarburising)was developed and compared with QPQ(Quench-polish-quench)technology for 45 steel. The cross-sectional microstructures, phase compositions, wear resistance and corrosion resistance were tested and analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM), wear tester and immersion corrosion test. The results show that after PNCO treatment, the same multi-layer structure was obtained as those by QPQ treatment, composed of 1—2 μm oxide layer on the surface and compound layer on the subsurface and effective hardening layer beneath. Meanwhile, nanostructured oxide film with denser compound layer was formed by PNCO treatment. Furthermore, both wear rate and corrosion weight loss rate are slightly lower than QPQ treatment, with wear rate of 1.39 mg/(N·m)and corrosion weight loss rate of 0.39% by PNCO, thus bringing better wear resistance and corrosion resistance than those by QPQ treatment. The study provides a feasible research area for environmentally efficient surface modification technology with excellent corrosion and wear resistance.

参考文献/References:

[1] ZHANG Z X, LI X Y, DONG H S. Plasma-nitriding and characterization of FeAl40 iron aluminide[J]. Acta Materialia, 2015, 86: 341-351.
[2] 胡飞, 刘利国, 陈未来, 等. AISI440C不锈钢QPQ盐浴复合表面处理及其耐磨性研究[J]. 热加工工艺, 2021, 50(18): 107-110.
[3] BELLAS L, CASTRO G, MERA L, et al. Effect of carbonitriding in a salt bath by a QPQ scheme on stainless steel 321 microstructure and service properties[J]. Metal Science and Heat Treatment, 2016, 58(5): 369-375.
[4] 张乐, 张津, 余强, 等. 氧化膜对14Cr12Ni2WMoVNb钢QPQ渗层的室温摩擦磨损和腐蚀性能的影响[J]. 工程科学学报, 2017, 39(7): 1047-1054.
[5] 韩瑞鹏, 罗德福, 石晓刚, 等. QPQ工艺温度对GH901合金渗氮层组织性能的影响[J]. 金属热处理, 2018, 43(10): 197-201.
[6] LI Y, WANG L, ZHANG D D, et al. Influence of bias voltage on the formation and properties of iron-based nitrides produced by plasma nitriding[J]. Journal of Alloys and Compounds, 2010, 497(1/2): 285-289.
[7] 张煜, 娄丽艳, 徐庆龙, 等. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[8] 蔡伟, 魏国方, 孟凡娜, 等. QPQ盐浴复合处理时间对304不锈钢耐磨性的影响[J]. 材料热处理学报, 2013, 34(1): 153-156.
[9] ZHOU Z S, DAI M Y, SHEN Z Y, et al. Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis[J]. Journal of Alloys and Compounds, 2015, 623: 261-265.
[10] 沈志远, 吴文莉, 胡建军, 等. QPQ复合盐浴处理中渗氮温度对35钢渗层形貌和表面性能的影响[J]. 常州大学学报(自然科学版), 2012, 24(3): 1-4.
[11] 王文昌, 谢春洋, 孔德军. 激光淬火对Cr12MoV钢渗硼层摩擦与磨损性能的影响[J]. 常州大学学报(自然科学版), 2015, 27(4): 47-52.
[12] 卢世静, 孙斐, 缪小吉, 等. 离子渗氮和固溶复合处理制备深层含氮奥氏体不锈钢[J]. 表面技术, 2018, 47(10): 180-185.
[13] JACQUET P, COUDERT J B, LOURDIN P. How different steel grades react to a salt bath nitrocarburizing and post-oxidation process: influence of alloying elements[J]. Surface and Coatings Technology, 2011, 205(16): 4064-4067.
[14] LIU Y J, SUN Y F, ZHANG W L, et al. Effect of QPQ nitriding parameters on properties of pearlite ductile cast iron[J]. International Journal of Metalcasting, 2020, 14(2): 556-563.
[15] WU K, LIU G Q, WANG L, et al. Research on new rapid and deep plasma nitriding techniques of AISI 420 martensitic stainless steel[J]. Vacuum, 2010, 84(6): 870-875.
[16] 叶雪梅, 武计强, 朱永利, 等. 丙烷浓度对45钢离子碳氮共渗的影响[J]. 真空科学与技术学报, 2015, 35(5): 580-583.
[17] 刘晗, 杨星梅, 潘太军, 等. 45钢离子氮氧共渗与离子渗氮动力学对比研究[J]. 材料热处理学报, 2016, 37(2): 208-211, 234.
[18] 缪跃琼, 林晨, 高玉新, 等. 304不锈钢低温离子渗氮及氮碳共渗处理[J]. 表面技术, 2015, 44(8): 61-64, 102.
[19] 雷临苹, 叶宏, 崔文语. QPQ处理后H13钢的组织与性能[J]. 金属热处理, 2018, 43(5): 124-127.
[20] 潘虹吉, 罗德福, 陈甥怡. 氮碳氧复合处理(QPQ)对MPS700A钢组织与性能的影响[J]. 金属热处理, 2021, 46(4): 83-87.
[21] YE X M, WU J Q, ZHU Y L, et al. A study of the effect of propane addition on plasma nitrocarburizing for AISI 1045 steel[J]. Vacuum, 2014, 110: 74-77.
[22] WU J Q, LIU H, LI J C, et al. Comparative study of plasma oxynitriding and plasma nitriding for AISI 4140 steel[J]. Journal of Alloys and Compounds, 2016, 680: 642-645.
[23] MIAO B, LI J C, LIU H, et al. Kinetics comparison between plasma oxynitriding and plasma nitriding and the application for AISI 1045 steel[J]. Surface Engineering, 2018, 34(2): 146-150.
[24] WANG B, LIU B, ZHANG X D, et al. Enhancing heavy load wear resistance of AISI 4140 steel through the formation of a severely deformed compound-free nitrided surface layer[J]. Surface and Coatings Technology, 2018, 356: 89-95.
[25] 李景才, 孙斐, 王树凯, 等. 离子渗氮前预氧化催渗作用及机理[J]. 材料热处理学报, 2014, 35(7): 182-186, 192.
[26] 张希平, 王美由, 高中楠, 等. 氮碳共渗+后氧化复合处理的应用研究[J]. 金属热处理, 2017, 42(7): 107-111.
[27] 杨海欧, 尚旭亮, 王理林, 等. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[28] 谢飞, 叶雪梅, 程健, 等. 工模具钢的一种节能高效表面渗硼技术[J]. 常州大学学报(自然科学版), 2012, 24(2): 1-4.
[29] 郑亚旭, 王福明, 王延露, 等. 20CrMnTi齿轮钢表面渗氮后的氧化处理工艺[J]. 材料热处理学报, 2016, 37(9): 190-195.
[30] 武计强, 李景才, 魏伟, 等. 离子后氧化对42CrMo钢渗氮组织与耐蚀性的影响及机理分析[J]. 真空科学与技术学报, 2015, 35(5): 575-579.
[31] TANG L, SUN F, MIAO X J, et al. Evolution of pre-oxide layer during subsequent plasma nitriding[J]. Vacuum, 2018, 152: 337-339.
[32] LIU H, LI J C, CHAI Y T, et al. Kinetics and enhancement mechanism of plasma oxynitriding for AISI 1045 steel[J]. Surface and Coatings Technology, 2016, 302: 22-26.
[33] 缪斌, 刘晗, 范琪, 等. 42CrMo钢离子氮碳氧多元共渗及动力学分析[J]. 材料热处理学报, 2016, 37(8): 184-188.
[34] 刘保国, 林玥, 张世宏. 离子氮化高速钢沉积掺钨类金刚石薄膜的摩擦磨损性能研究[J]. 表面技术, 2016, 45(6): 119-124.
[35] 武计强, 李虎, 李景才, 等. 42CrMo钢的空气离子后氧化[J]. 材料热处理学报, 2015, 36(3): 78-82.
[36] 彭甜甜, 林超林, 陈尧, 等. 离子渗氮化合物层物相调控对耐磨性的影响[J]. 表面技术, 2020, 49(8): 172-177.
[37] YANG Y, DAI X Z, YANG X R, et al. First-principles analysis on the role of rare-earth doping in affecting nitrogen adsorption and diffusion at Fe surface towards clarified catalytic diffusion mechanism in nitriding[J]. Acta Materialia, 2020, 196: 347-354.

备注/Memo

备注/Memo:
收稿日期: 2024-01-19。
基金项目: 国家自然科学基金面上项目(21978025); 江苏省第三期优势学科建设资助项目(PAPD-3); 江苏高校品牌专业建设工程资助项目(TAPP-2016); 枣庄市自主创新及成果转化资助计划(2021GH10)。
作者简介: 胡静(1966—), 女, 湖南长沙人, 博士, 教授。E-mail: jinghoo@126.com
更新日期/Last Update: 1900-01-01