[1]孔 泳,梁政崟,芮 倩,等.基于天然多糖的刺激响应型药物控释系统研究进展[J].常州大学学报(自然科学版),2024,36(03):59-70.[doi:10.3969/j.issn.2095-0411.2024.03.007]
 KONG Yong,LIANG Zhengyin,RUI Qian,et al.Progress on stimuli-responsive drug controlled delivery systems based on natural polysaccharides[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):59-70.[doi:10.3969/j.issn.2095-0411.2024.03.007]
点击复制

基于天然多糖的刺激响应型药物控释系统研究进展()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年03期
页码:
59-70
栏目:
生物医药工程
出版日期:
2024-05-28

文章信息/Info

Title:
Progress on stimuli-responsive drug controlled delivery systems based on natural polysaccharides
文章编号:
2095-0411(2024)03-0059-12
作者:
孔 泳1 梁政崟1 芮 倩1 李尚基1 盛焱山1 高 俊2
1.常州大学 石油化工学院, 江苏 常州 213164; 2.常州市中医医院 骨伤科, 江苏 常州 213003
Author(s):
KONG Yong1 LIANG Zhengyin1 RUI Qian1 LI Shangji1 SHENG Yanshan1 GAO Jun2
1.School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; 2.Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China
关键词:
刺激响应型 天然多糖 药物控释系统 刺激方式
Keywords:
stimuli-responsiveness natural polysaccharides drug controlled delivery systems stimuli modes
分类号:
O 636
DOI:
10.3969/j.issn.2095-0411.2024.03.007
文献标志码:
A
摘要:
刺激响应型药物控释系统一般以天然多糖生物大分子或其衍生物作为载体,通过化学结合或物理吸附等方式负载药物分子。具有刺激响应功能的天然多糖生物大分子或其衍生物能够感知其所处环境的变化,并由于其物理或化学性质的变化而做出应激响应,因此可在不同环境或条件的刺激下,通过药物与载体之间化学键断裂或载体自身降解等方式将药物从载体中释放,从而实现药物的控制释放。结合课题组的研究工作,介绍了常用的刺激方式,包括单一刺激和多重刺激、外源性刺激和内源性刺激,为开发新型刺激响应型药物控释系统提供了思路。
Abstract:
Stimuli-responsive drug controlled delivery systems are generally constructed by using natural polysaccharides biomacromolecules or their derivatives as the carriers, and the drug molecules are loaded into these biomacromolecules through chemical binding or physical adsorption. Stimuli-responsive natural polysaccharides biomacromolecules can sense the changes of their surroundings and respond to the changes in their physical or chemical properties, and thus the loaded drugs can be released from the carriers through the breakage of chemical bonding between drug and carrier or the degradation of the carrier itself and controlled delivery of the loaded drugs can be achieved. In this paper, we reviewed the commonly used stimuli modes, including exogenous stimuli and endogenous stimuli, single stimulus and multiple stimuli, and some of these stimuli modes have been reported by our own group. We believe that this review is of great importance for development of stimuli-responsive drug controlled delivery systems.

参考文献/References:

[1] FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22): 13566-13638.
[2] CHEUNG K, DAS D B. Microneedles for drug delivery: trends and progress[J]. Drug Delivery, 2016, 23(7): 2338-2354.
[3] KIM Y H, TABATA Y. Dual-controlled release system of drugs for bone regeneration[J]. Advanced Drug Delivery Reviews, 2015, 94: 28-40.
[4] ALLEN T M, CULLIS P R. Drug delivery systems: entering the mainstream[J]. Science, 2004, 303(5665): 1818-1822.
[5] 张文龙, 王勇, 鲍玉成, 等. 组织工程及缓释体系中聚乳酸类医用材料的应用[J]. 中国组织工程研究与临床康复, 2011, 15(3): 503-506.
[6] LI Y L, RODRIGUES J, TOMÁS H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications[J]. Chemical Society Reviews, 2012, 41(6): 2193-2221.
[7] CHEN N S, WANG H, LING C, et al. Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery[J]. Carbohydrate Polymers, 2019, 225: 115207.
[8] RAEMDONCK K, DEMEESTER J, DE SMEDT S. Advanced nanogel engineering for drug delivery[J]. Soft Matter, 2009, 5(4): 707-715.
[9] JAMEELA S R, JAYAKRISHNAN A. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle[J]. Biomaterials, 1995, 16(10): 769-775.
[10] FAN M, MA Y, TAN H P, et al. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering[J]. Materials Science and Engineering: C, 2017, 71: 67-74.
[11] GOMBOTZ W R, WEE S F. Protein release from alginate matrices[J]. Advanced Drug Delivery Reviews, 2012, 64: 194-205.
[12] ZHANG Y L, JIA X Y, WANG L Y, et al. Preparation of Ca-alginate microparticles and its application for phenylketonuria oral therapy[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 4106-4112.
[13] AZNAR E, MONDRAGÓN L, ROS-LIS J V, et al. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles[J]. Angewandte Chemie(International Ed in English), 2011, 50(47): 11172-11175.
[14] SCHLOSSBAUER A, WARNCKE S, GRAMLICH P M E, et al. A programmable DNA-based molecular valve for colloidal mesoporous silica[J]. Angewandte Chemie(International Ed in English), 2010, 49(28): 4734-4737.
[15] ZHU Y C, LIU H J, LI F, et al. Dipolar molecules as impellers achieving electric-field-stimulated release[J]. Journal of the American Chemical Society, 2010, 132(5): 1450-1451.
[16] HU C L, YU L X, ZHENG Z, et al. Tannin as a gatekeeper of pH-responsive mesoporous silica nanoparticles for drug delivery[J]. RSC Advances, 2015, 5(104): 85436-85441.
[17] LAI C Y, TREWYN B G, JEFTINIJA D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of the American Chemical Society, 2003, 125(15): 4451-4459.
[18] GIRI S, TREWYN B G, STELLMAKER M P, et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angewandte Chemie(International Ed in English), 2005, 44(32): 5038-5044.
[19] LEE W, KIM D, LEE S, et al. Stimuli-responsive switchable organic-inorganic nanocomposite materials[J]. Nano Today, 2018, 23: 97-123.
[20] NAKAYAMA M, CHUNG J E, MIYAZAKI T, et al. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles[J]. Reactive and Functional Polymers, 2007, 67(11): 1398-1407.
[21] QI M Y, LI G Y, YU N N, et al. Synthesis of thermo-sensitive polyelectrolyte complex nanoparticles from CS-g-PNIPAM and SA-g-PNIPAM for controlled drug release[J]. Macromolecular Research, 2014, 22(9): 1004-1011.
[22] YOU Y Z, KALEBAILA K K, BROCK S L, et al. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles[J]. Chemistry of Materials, 2008, 20(10): 3354-3359.
[23] VIVERO-ESCOTO J L, SLOWING I I, WU C W, et al. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere[J]. Journal of the American Chemical Society, 2009, 131(10): 3462-3463.
[24] ZHANG Z J, WANG J, NIE X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20): 7317-7326.
[25] YANG X J, LIU X, LIU Z, et al. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles[J]. Advanced Materials, 2012, 24(21): 2890-2895.
[26] ZHOU L, CHEN Z W, DONG K, et al. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release[J]. Advanced Materials, 2014, 26(15): 2424-2430.
[27] ALEJO T, ANDREU V, MENDOZA G, et al. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating[J]. Journal of Colloid and Interface Science, 2018, 523: 234-244.
[28] LUO S Y, WU J, JIA Z R, et al. An injectable, bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration[J]. Macromolecular Bioscience, 2019, 19(9): e1900047.
[29] PRIETO M, RWEI A Y, ALEJO T, et al. Light-emitting photon-upconversion nanoparticles in the generation of transdermal reactive-oxygen species[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 41737-41747.
[30] RAZA A, RASHEED T, NABEEL F, et al. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release[J]. Molecules, 2019, 24(6): 1117.
[31] PANKHURST Q A, CONNOLLY J, JONES S K, et al. Applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D: Applied Physics, 2003, 36(13): R167-R181.
[32] JURGONS R, SELIGER C, HILPERT A, et al. Drug loaded magnetic nanoparticles for cancer therapy[J]. Journal of Physics: Condensed Matter, 2006, 18(38): S2893-S2902.
[33] BAI J, WANG J T W, MEI K C, et al. Real-time monitoring of magnetic drug targeting using fibered confocal fluorescence microscopy[J]. Journal of Controlled Release, 2016, 244: 240-246.
[34] ZHANG D, SUN P, LI P, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guérin in the treatment of bladder cancer[J]. Biomaterials, 2013, 34(38): 10258-10266.
[35] LIU X L, TAO Y X, MAO H H, et al. Construction of magnetic-targeted and NIR irradiation-controlled drug delivery platform with Fe3O4@Au@SiO2 nanospheres[J]. Ceramics International, 2017, 43(6): 5061-5067.
[36] ZHU Y F, YAO L L, LIU Z G, et al. Electrical potential specified release of BSA/hep/polypyrrole composite film and its cellular responses[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25457-25464.
[37] GE H L, KONG Y, SHOU D, et al. Three-dimensional electro- and pH-responsive polypyrrole/alginate hybrid for dual-controlled drug delivery[J]. Journal of the Electrochemical Society, 2016, 163(5): G33-G36.
[38] KONG Y, GE H L, XIONG J X, et al. Palygorskite polypyrrole nanocomposite: a new platform for electrically tunable drug delivery[J]. Applied Clay Science, 2014, 99: 119-124.
[39] PARIS J L, CABAÑAS M V, MANZANO M, et al. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers[J]. ACS Nano, 2015, 9(11): 11023-11033.
[40] LI X C, WANG Z H, XIA H S. Ultrasound reversible response nanocarrier based on sodium alginate modified mesoporous silica nanoparticles[J]. Frontiers in Chemistry, 2019, 7: 59.
[41] TANNOCK I F, ROTIN D. Acid pH in tumors and its potential for therapeutic exploitation[J]. Cancer Research, 1989, 49(16): 4373-4384.
[42] RAFI A A, MAHKAM M. Preparation of magnetic pH-sensitive microcapsules with an alginate base as colon specific drug delivery systems through an entirely green route[J]. RSC Advances, 2015, 5(6): 4628-4638.
[43] MUHAMMAD F, GUO M Y, QI W X, et al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids[J]. Journal of the American Chemical Society, 2011, 133(23): 8778-8781.
[44] HAN H S, CHOI K Y, KO H, et al. Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy[J]. Journal of Controlled Release, 2015, 200: 158-166.
[45] PARK K, PARK S S, YUN Y H, et al. Mesoporous silica nanoparticles functionalized with a redox-responsive biopolymer[J]. Journal of Porous Materials, 2017, 24(5): 1215-1225.
[46] PETHE A M, YADAV K S. Polymers, responsiveness and cancer therapy[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 395-405.
[47] GIANNELLI G, FALK-MARZILLIER J, SCHIRALDI O, et al. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5[J]. Science, 1997, 277(5323): 225-228.
[48] PARK C, KIM H, KIM S, et al. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests[J]. Journal of the American Chemical Society, 2009, 131(46): 16614-16615.
[49] LIU J J, ZHANG B L, LUO Z, et al. Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo[J]. Nanoscale, 2015, 7(8): 3614-3626.
[50] CHENG R, MENG F H, DENG C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery[J]. Biomaterials, 2013, 34(14): 3647-3657.
[51] WU S S, HUANG X, DU X Z. Glucose- and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers[J]. Angewandte Chemie(International Ed in English), 2013, 52(21): 5580-5584.
[52] SUN L, ZHANG X G, ZHENG C, et al. A pH gated, glucose-sensitive nanoparticle based on worm-like mesoporous silica for controlled insulin release[J]. The Journal of Physical Chemistry B, 2013, 117(14): 3852-3860.
[53] AZNAR E, MARCOS M D, MARTÍNEZ-MÁÑEZ R, et al. pH- and photo-switched release of guest molecules from mesoporous silica supports[J]. Journal of the American Chemical Society, 2009, 131(19): 6833-6843.
[54] DUAN L L, WANG Y F, ZHANG Y H, et al. pH/redox/thermo-stimulative nanogels with enhanced thermosensitivity via incorporation of cationic and anionic components for anticancer drug delivery[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67(5): 288-296.
[55] GAO D D, DUAN L L, WU M, et al. Preparation of thermo/redox/pH-stimulative poly(N-isopropylacrylamide-co-N, N'-dimethylaminoethyl methacrylate)nanogels and their DOX release behaviors[J]. Journal of Biomedical Materials Research Part A, 2019, 107(6): 1195-1203.
[56] ZHANG M, LIU J, KUANG Y, et al. Stealthy chitosan/mesoporous silica nanoparticle based complex system for tumor-triggered intracellular drug release[J]. Journal of Materials Chemistry B, 2016, 4(19): 3387-3397.
[57] QIU L, ZHANG W R, WANG S Y, et al. Construction of multifunctional porous silica nanocarriers for pH/enzyme-responsive drug release[J]. Materials Science and Engineering: C, 2017, 81: 485-491.
[58] LI S J, CAO C, GAO J, et al. Dual stimuli-responsive nanoplatform based on core-shell structured graphene oxide/mesoporous silica@alginate[J]. International Journal of Biological Macromolecules, 2021, 175: 209-216.
[59] SHENG Y S, CAO C, LIANG Z Y, et al. Construction of a dual-drug delivery system based on oxidized alginate and carboxymethyl chitosan for chemo-photothermal synergistic therapy of osteosarcoma[J]. European Polymer Journal, 2022, 174: 111331.
[60] LIANG Z Y, CAO C, GAO J, et al. Gold nanorods@mesoporous SiO2@hyaluronic acid core-shell nanoparticles for controlled drug delivery[J]. ACS Applied Nano Materials, 2022, 5(5): 7440-7448.

备注/Memo

备注/Memo:
收稿日期: 2024-02-11。
基金项目: 江苏省自然科学基金资助项目(BK20211066); 南京中医药大学自然科学基金资助项目(XZR2020042)。
作者简介: 孔泳(1976—), 男, 江苏泰州人, 博士, 教授。E-mail: yzkongyong@cczu.edu.cn
更新日期/Last Update: 1900-01-01