参考文献/References:
[1] FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22): 13566-13638.
[2] CHEUNG K, DAS D B. Microneedles for drug delivery: trends and progress[J]. Drug Delivery, 2016, 23(7): 2338-2354.
[3] KIM Y H, TABATA Y. Dual-controlled release system of drugs for bone regeneration[J]. Advanced Drug Delivery Reviews, 2015, 94: 28-40.
[4] ALLEN T M, CULLIS P R. Drug delivery systems: entering the mainstream[J]. Science, 2004, 303(5665): 1818-1822.
[5] 张文龙, 王勇, 鲍玉成, 等. 组织工程及缓释体系中聚乳酸类医用材料的应用[J]. 中国组织工程研究与临床康复, 2011, 15(3): 503-506.
[6] LI Y L, RODRIGUES J, TOMÁS H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications[J]. Chemical Society Reviews, 2012, 41(6): 2193-2221.
[7] CHEN N S, WANG H, LING C, et al. Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery[J]. Carbohydrate Polymers, 2019, 225: 115207.
[8] RAEMDONCK K, DEMEESTER J, DE SMEDT S. Advanced nanogel engineering for drug delivery[J]. Soft Matter, 2009, 5(4): 707-715.
[9] JAMEELA S R, JAYAKRISHNAN A. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle[J]. Biomaterials, 1995, 16(10): 769-775.
[10] FAN M, MA Y, TAN H P, et al. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering[J]. Materials Science and Engineering: C, 2017, 71: 67-74.
[11] GOMBOTZ W R, WEE S F. Protein release from alginate matrices[J]. Advanced Drug Delivery Reviews, 2012, 64: 194-205.
[12] ZHANG Y L, JIA X Y, WANG L Y, et al. Preparation of Ca-alginate microparticles and its application for phenylketonuria oral therapy[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 4106-4112.
[13] AZNAR E, MONDRAGÓN L, ROS-LIS J V, et al. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles[J]. Angewandte Chemie(International Ed in English), 2011, 50(47): 11172-11175.
[14] SCHLOSSBAUER A, WARNCKE S, GRAMLICH P M E, et al. A programmable DNA-based molecular valve for colloidal mesoporous silica[J]. Angewandte Chemie(International Ed in English), 2010, 49(28): 4734-4737.
[15] ZHU Y C, LIU H J, LI F, et al. Dipolar molecules as impellers achieving electric-field-stimulated release[J]. Journal of the American Chemical Society, 2010, 132(5): 1450-1451.
[16] HU C L, YU L X, ZHENG Z, et al. Tannin as a gatekeeper of pH-responsive mesoporous silica nanoparticles for drug delivery[J]. RSC Advances, 2015, 5(104): 85436-85441.
[17] LAI C Y, TREWYN B G, JEFTINIJA D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of the American Chemical Society, 2003, 125(15): 4451-4459.
[18] GIRI S, TREWYN B G, STELLMAKER M P, et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angewandte Chemie(International Ed in English), 2005, 44(32): 5038-5044.
[19] LEE W, KIM D, LEE S, et al. Stimuli-responsive switchable organic-inorganic nanocomposite materials[J]. Nano Today, 2018, 23: 97-123.
[20] NAKAYAMA M, CHUNG J E, MIYAZAKI T, et al. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles[J]. Reactive and Functional Polymers, 2007, 67(11): 1398-1407.
[21] QI M Y, LI G Y, YU N N, et al. Synthesis of thermo-sensitive polyelectrolyte complex nanoparticles from CS-g-PNIPAM and SA-g-PNIPAM for controlled drug release[J]. Macromolecular Research, 2014, 22(9): 1004-1011.
[22] YOU Y Z, KALEBAILA K K, BROCK S L, et al. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles[J]. Chemistry of Materials, 2008, 20(10): 3354-3359.
[23] VIVERO-ESCOTO J L, SLOWING I I, WU C W, et al. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere[J]. Journal of the American Chemical Society, 2009, 131(10): 3462-3463.
[24] ZHANG Z J, WANG J, NIE X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20): 7317-7326.
[25] YANG X J, LIU X, LIU Z, et al. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles[J]. Advanced Materials, 2012, 24(21): 2890-2895.
[26] ZHOU L, CHEN Z W, DONG K, et al. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release[J]. Advanced Materials, 2014, 26(15): 2424-2430.
[27] ALEJO T, ANDREU V, MENDOZA G, et al. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating[J]. Journal of Colloid and Interface Science, 2018, 523: 234-244.
[28] LUO S Y, WU J, JIA Z R, et al. An injectable, bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration[J]. Macromolecular Bioscience, 2019, 19(9): e1900047.
[29] PRIETO M, RWEI A Y, ALEJO T, et al. Light-emitting photon-upconversion nanoparticles in the generation of transdermal reactive-oxygen species[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 41737-41747.
[30] RAZA A, RASHEED T, NABEEL F, et al. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release[J]. Molecules, 2019, 24(6): 1117.
[31] PANKHURST Q A, CONNOLLY J, JONES S K, et al. Applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D: Applied Physics, 2003, 36(13): R167-R181.
[32] JURGONS R, SELIGER C, HILPERT A, et al. Drug loaded magnetic nanoparticles for cancer therapy[J]. Journal of Physics: Condensed Matter, 2006, 18(38): S2893-S2902.
[33] BAI J, WANG J T W, MEI K C, et al. Real-time monitoring of magnetic drug targeting using fibered confocal fluorescence microscopy[J]. Journal of Controlled Release, 2016, 244: 240-246.
[34] ZHANG D, SUN P, LI P, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guérin in the treatment of bladder cancer[J]. Biomaterials, 2013, 34(38): 10258-10266.
[35] LIU X L, TAO Y X, MAO H H, et al. Construction of magnetic-targeted and NIR irradiation-controlled drug delivery platform with Fe3O4@Au@SiO2 nanospheres[J]. Ceramics International, 2017, 43(6): 5061-5067.
[36] ZHU Y F, YAO L L, LIU Z G, et al. Electrical potential specified release of BSA/hep/polypyrrole composite film and its cellular responses[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25457-25464.
[37] GE H L, KONG Y, SHOU D, et al. Three-dimensional electro- and pH-responsive polypyrrole/alginate hybrid for dual-controlled drug delivery[J]. Journal of the Electrochemical Society, 2016, 163(5): G33-G36.
[38] KONG Y, GE H L, XIONG J X, et al. Palygorskite polypyrrole nanocomposite: a new platform for electrically tunable drug delivery[J]. Applied Clay Science, 2014, 99: 119-124.
[39] PARIS J L, CABAÑAS M V, MANZANO M, et al. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers[J]. ACS Nano, 2015, 9(11): 11023-11033.
[40] LI X C, WANG Z H, XIA H S. Ultrasound reversible response nanocarrier based on sodium alginate modified mesoporous silica nanoparticles[J]. Frontiers in Chemistry, 2019, 7: 59.
[41] TANNOCK I F, ROTIN D. Acid pH in tumors and its potential for therapeutic exploitation[J]. Cancer Research, 1989, 49(16): 4373-4384.
[42] RAFI A A, MAHKAM M. Preparation of magnetic pH-sensitive microcapsules with an alginate base as colon specific drug delivery systems through an entirely green route[J]. RSC Advances, 2015, 5(6): 4628-4638.
[43] MUHAMMAD F, GUO M Y, QI W X, et al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids[J]. Journal of the American Chemical Society, 2011, 133(23): 8778-8781.
[44] HAN H S, CHOI K Y, KO H, et al. Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy[J]. Journal of Controlled Release, 2015, 200: 158-166.
[45] PARK K, PARK S S, YUN Y H, et al. Mesoporous silica nanoparticles functionalized with a redox-responsive biopolymer[J]. Journal of Porous Materials, 2017, 24(5): 1215-1225.
[46] PETHE A M, YADAV K S. Polymers, responsiveness and cancer therapy[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 395-405.
[47] GIANNELLI G, FALK-MARZILLIER J, SCHIRALDI O, et al. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5[J]. Science, 1997, 277(5323): 225-228.
[48] PARK C, KIM H, KIM S, et al. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests[J]. Journal of the American Chemical Society, 2009, 131(46): 16614-16615.
[49] LIU J J, ZHANG B L, LUO Z, et al. Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo[J]. Nanoscale, 2015, 7(8): 3614-3626.
[50] CHENG R, MENG F H, DENG C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery[J]. Biomaterials, 2013, 34(14): 3647-3657.
[51] WU S S, HUANG X, DU X Z. Glucose- and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers[J]. Angewandte Chemie(International Ed in English), 2013, 52(21): 5580-5584.
[52] SUN L, ZHANG X G, ZHENG C, et al. A pH gated, glucose-sensitive nanoparticle based on worm-like mesoporous silica for controlled insulin release[J]. The Journal of Physical Chemistry B, 2013, 117(14): 3852-3860.
[53] AZNAR E, MARCOS M D, MARTÍNEZ-MÁÑEZ R, et al. pH- and photo-switched release of guest molecules from mesoporous silica supports[J]. Journal of the American Chemical Society, 2009, 131(19): 6833-6843.
[54] DUAN L L, WANG Y F, ZHANG Y H, et al. pH/redox/thermo-stimulative nanogels with enhanced thermosensitivity via incorporation of cationic and anionic components for anticancer drug delivery[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67(5): 288-296.
[55] GAO D D, DUAN L L, WU M, et al. Preparation of thermo/redox/pH-stimulative poly(N-isopropylacrylamide-co-N, N'-dimethylaminoethyl methacrylate)nanogels and their DOX release behaviors[J]. Journal of Biomedical Materials Research Part A, 2019, 107(6): 1195-1203.
[56] ZHANG M, LIU J, KUANG Y, et al. Stealthy chitosan/mesoporous silica nanoparticle based complex system for tumor-triggered intracellular drug release[J]. Journal of Materials Chemistry B, 2016, 4(19): 3387-3397.
[57] QIU L, ZHANG W R, WANG S Y, et al. Construction of multifunctional porous silica nanocarriers for pH/enzyme-responsive drug release[J]. Materials Science and Engineering: C, 2017, 81: 485-491.
[58] LI S J, CAO C, GAO J, et al. Dual stimuli-responsive nanoplatform based on core-shell structured graphene oxide/mesoporous silica@alginate[J]. International Journal of Biological Macromolecules, 2021, 175: 209-216.
[59] SHENG Y S, CAO C, LIANG Z Y, et al. Construction of a dual-drug delivery system based on oxidized alginate and carboxymethyl chitosan for chemo-photothermal synergistic therapy of osteosarcoma[J]. European Polymer Journal, 2022, 174: 111331.
[60] LIANG Z Y, CAO C, GAO J, et al. Gold nanorods@mesoporous SiO2@hyaluronic acid core-shell nanoparticles for controlled drug delivery[J]. ACS Applied Nano Materials, 2022, 5(5): 7440-7448.