[1]秦晶莹,王车礼,孙文平,等.还原型谷胱甘肽对大鼠肺成纤维细胞的影响[J].常州大学学报(自然科学版),2024,36(03):71-79.[doi:10.3969/j.issn.2095-0411.2024.03.008]
 QIN Jingying,WANG Cheli,SUN Wenping,et al.Effects of glutathione on rat lung fibroblasts[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):71-79.[doi:10.3969/j.issn.2095-0411.2024.03.008]
点击复制

还原型谷胱甘肽对大鼠肺成纤维细胞的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年03期
页码:
71-79
栏目:
生物医药工程
出版日期:
2024-05-28

文章信息/Info

Title:
Effects of glutathione on rat lung fibroblasts
文章编号:
2095-0411(2024)03-0071-09
作者:
秦晶莹 王车礼 孙文平 乔海燕 刘恒宇 周晓鹰
常州大学 药学院, 江苏 常州 213164
Author(s):
QIN Jingying WANG Cheli SUN Wenping QIAO Haiyan LIU Hengyu ZHOU Xiaoying
School of Pharmacy, Changzhou University, Changzhou 213164, China
关键词:
还原型谷胱甘肽 肺纤维化 肺成纤维细胞 氧化还原平衡
Keywords:
glutathione pulmonary fibrosis lung fibroblasts redox equilibrium
分类号:
R 967
DOI:
10.3969/j.issn.2095-0411.2024.03.008
文献标志码:
A
摘要:
研究过量的还原型谷胱甘肽(Glutathione, GSH)对肺成纤维细胞(Lung fibroblasts, LFS)的影响,以此来探究氧化还原平衡被打破后LFS的状态和变化。提取新鲜的大鼠LFS,通过细胞活力实验、明胶酶谱法、细胞形态实验、划痕实验、细胞免疫荧光染色和蛋白质免疫印记实验,观察不同浓度的GSH对LFS的增殖、生长、迁移以及信号通路的影响。实验表明,细胞外GSH干预可以引起LFS内稳态的改变,使局部黏着斑激酶(Focal adhesion kinase,FAK)、核因子κB(Nuclear factor kappa-B,NF-κB)、磷酸化组蛋白(Phospho-histone gamma H2A.X, γ-H2A.X)表达增高,但抑制细胞分泌的基质金属蛋白酶-2/9(MMP-2/9)的活力,使用过高浓度GSH干预时,其细胞的迁移、丝裂原活化蛋白激酶(p38)的表达、抑癌基因(p53)蛋白的表达被抑制。综上所述,过高的细胞外GSH可能导致LFS出现DNA损伤以及细胞衰竭并失能,从而引起肺组织病变。另外,过多抗氧化剂的使用会打破细胞内稳态平衡,并可能会对机体造成不可逆的损伤。
Abstract:
The purpose of this study was to investigate the effect of excessive GSH on LFS, and to explore the status changes after the redox balance was broken. Fresh rat LFS were extracted and cultured in vitro. Cell MTT test, gelatin enzyme assay, cell morphology test, scratch test, cell immunofluorescence staining, and western blot were employed to observe the proliferation, growth, and migration of LFS with varying concentrations of GSH as well as changes in signaling pathways. The results revealed that GSH altered intracellular homeostasis of LFS, inhibited MMP-2/9 activity, and increased the expressions of focal adhesion kinase(FAK), nuclear factor kappa-B(NF-κB), phospho-histone gamma H2A.X(γ-H2A.X). But the excessive GSH inhibited cell migration, p38 and p53 protein expressions. In summary, excessive GSH may induce DNA damage and exhaustion in LFS cells leading to lung problems. In addition, excessive use of antioxidants can disrupt cellular homeostasis and may cause irreversible damage to the body.

参考文献/References:

[1] KULKARNI T, O'REILLY P, ANTONY V B, et al. Matrix remodeling in pulmonary fibrosis and emphysema[J]. American Journal of Respiratory Cell and Molecular Biology, 2016, 54(6): 751-760.
[2] KOLAHIAN S, FERNANDEZ I E, EICKELBERG O, et al. Immune mechanisms in pulmonary fibrosis[J]. American Journal of Respiratory Cell and Molecular Biology, 2016, 55(3): 309-322.
[3] WIJSENBEEK M. Progress in the treatment of pulmonary fibrosis[J]. The Lancet Respiratory Medicine, 2020, 8(5): 424-425.
[4] UPAGUPTA C, SHIMBORI C, ALSILMI R, et al. Matrix abnormalities in pulmonary fibrosis[J]. European Respiratory Review, 2018, 27(148): 180033.
[5] KNUDSEN L, RUPPERT C, OCHS M. Tissue remodelling in pulmonary fibrosis[J]. Cell and Tissue Research, 2017, 367(3): 607-626.
[6] DENG Z J, FEAR M W, CHOI Y S, et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis[J]. The International Journal of Biochemistry & Cell Biology, 2020, 126: 105802.
[7] 蒋媛, 张倩, 吴雨丹, 等. 基质金属蛋白酶活性在3种肺疾病中的比较[J]. 常州大学学报(自然科学版), 2017, 29(2): 47-51.
[8] KULKARNI T, DE ANDRADE J, ZHOU Y, et al. Alveolar epithelial disintegrity in pulmonary fibrosis[J]. American Journal of Physiology Lung Cellular and Molecular Physiology, 2016, 311(2): 185-191.
[9] ZAAFAN M A, ZAKI H F, EL-BRAIRY A I, et al. Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: modulation of oxidative stress, fibrosis, and inflammatory parameters[J]. Experimental Lung Research, 2016, 42(8/9/10): 408-416.
[10] GAD S C. Glutathione[M]//Encyclopedia of Toxicology. Oxford: Academic Press, 2024: 1001-1002.
[11] AVERILL-BATES D A. The antioxidant glutathione[J]. Vitamins and Hormones, 2023, 121: 109-141.
[12] NIU B Y, LIAO K X, ZHOU Y X, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy[J]. Biomaterials, 2021, 277: 121110.
[13] TRAVERSO N, RICCIARELLI R, NITTI M, et al. Role of glutathione in cancer progression and chemoresistance[J]. Oxidative Medicine and Cellular Longevity, 2013, 2013: 972913.
[14] AQUILANO K, BALDELLI S, CIRIOLO M R. Glutathione: new roles in redox signaling for an old antioxidant[J]. Frontiers in Pharmacology, 2014, 5: 196-205.
[15] BANSAL A, SIMON M C. Glutathione metabolism in cancer progression and treatment resistance[J]. The Journal of Cell Biology, 2018, 217(7): 2291-2298.
[16] RIBAS V, GARCÍA-RUIZ C, FERNÁNDEZ-CHECA J C. Glutathione and mitochondria[J]. Frontiers in Pharmacology, 2014, 5: 151-159.
[17] BJØRKLUND G, PEANA M, MAES M, et al. The glutathione system in Parkinson's disease and its progression[J]. Neuroscience & Biobehavioral Reviews, 2021, 120: 470-478.
[18] ROCHETTE L, DOGON G, RIGAL E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. International Journal of Molecular Sciences, 2022, 24(1): 449-458.
[19] ZIADY A G, HANSEN J. Redox balance in cystic fibrosis[J]. The International Journal of Biochemistry & Cell Biology, 2014, 52: 113-123.
[20] JANSSEN-HEININGER Y. Glutathione, glutaredoxin and S-glutathionylation in lung disease[J]. Free Radical Biology and Medicine, 2017, 112: 3-8.
[21] PARDO A, SELMAN M. Lung fibroblasts, aging, and idiopathic pulmonary fibrosis[J]. Annals of the American Thoracic Society, 2016, 13(5): 417-421.
[22] LEBEL M, CLICHE D O, CHARBONNEAU M, et al. Invadosome formation by lung fibroblasts in idiopathic pulmonary fibrosis[J]. International Journal of Molecular Sciences, 2022, 24(1): 499-507.
[23] LI X B, BAI Z N, LI Z S, et al. Toosendanin restrains idiopathic pulmonary fibrosis by inhibiting ZEB1/CTBP1 interaction[J]. Current Molecular Medicine, 2024, 24(1): 123-133.
[24] 陈鹰娜, 李秀文, 周晓鹰. 孟河古方龙火汤治疗类风湿关节炎的机制[J]. 常州大学学报(自然科学版), 2022, 34(6): 84-92.
[25] KARAKAS D, ARI F, ULUKAYA E. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts[J]. Turkish Journal of Biology, 2017, 41(6): 919-925.
[26] VALENCIA E, MARIN A, HARDY G. Glutathione: nutritional and pharmacological viewpoints: part Ⅱ[J]. Nutrition, 2001, 17(6): 485-486.
[27] GU G Z, XIA H M, HU Q Y, et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy[J]. Biomaterials, 2013, 34(1): 196-208.
[28] BABYKUTTY S, SUBOJ P, SRINIVAS P, et al. Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways[J]. Clinical & Experimental Metastasis, 2012, 29(5): 471-492.
[29] NANA F A, HOTON D, AMBROISE J, et al. Increased expression and activation of FAK in small-cell lung cancer compared to non-small-cell lung cancer[J]. Cancers, 2019, 11(10): 1526-1534.
[30] GIULIANI C, NAPOLITANO G, BUCCI I, et al. Nf-κB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications[J]. La Clinica Terapeutica, 2001, 152(4): 249-253.
[31] TILBORGHS S, CORTHOUTS J, VERHOEVEN Y, et al. The role of nuclear factor-kappa B signaling in human cervical cancer[J]. Critical Reviews in Oncology/Hematology, 2017, 120: 141-150.
[32] AGOSTINI M, DI MARCO B, NOCENTINI G, et al. Oxidative stress and apoptosis in immune diseases[J]. International Journal of Immunopathology and Pharmacology, 2002, 15(3): 157-164.
[33] MAH L J, EL-OSTA A, KARAGIANNIS T C. Gamma H2AX: a sensitive molecular marker of DNA damage and repair[J]. Leukemia, 2010, 24(4): 679-686.
[34] MARUYAMA M, SUDO T, KASUYA Y, et al. Immunolocalization of p38 MAP kinase in mouse brain[J]. Brain Research, 2000, 887(2): 350-358.
[35] HAN J H, SUN P Q. The pathways to tumor suppression via route p38[J]. Trends in Biochemical Sciences, 2007, 32(8): 364-371.
[36] MARVALIM C, DATTA A, LEE S C. Role of p53 in breast cancer progression: an insight into p53 targeted therapy[J]. Theranostics, 2023, 13(4): 1421-1442.
[37] MENTOR S, FISHER D. Aggressive antioxidant reductive stress impairs brain endothelial cell angiogenesis and blood brain barrier function[J]. Current Neurovascular Research, 2017, 14(1): 71-81.
[38] POLJSAK B, UPUT D, MILISAV I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants[J]. Oxidative Medicine and Cellular Longevity, 2013, 2013: 956792.
[39] JÎTC G, SZ B E, TERO-VESCAN A, et al. Positive aspects of oxidative stress at different levels of the human body: a review[J]. Antioxidants, 2022, 11(3): 572-579.
[40] KOKOSZKO A, LEWIN'SKI A, KARBOWNIK-LEWIN'SKA M. The role of growth hormone and insulin-like growth factor I in oxidative processes[J]. Endokrynologia Polska, 2008, 59(6): 496-501.

备注/Memo

备注/Memo:
收稿日期: 2024-01-28。
作者简介: 秦晶莹(1992—), 女, 安徽亳州人, 硕士生。通信联系人: 周晓鹰(1957—), E-mail: xiaoyingzhou@cczu.edu.cn
更新日期/Last Update: 1900-01-01