参考文献/References:
[1] KULKARNI T, O'REILLY P, ANTONY V B, et al. Matrix remodeling in pulmonary fibrosis and emphysema[J]. American Journal of Respiratory Cell and Molecular Biology, 2016, 54(6): 751-760.
[2] KOLAHIAN S, FERNANDEZ I E, EICKELBERG O, et al. Immune mechanisms in pulmonary fibrosis[J]. American Journal of Respiratory Cell and Molecular Biology, 2016, 55(3): 309-322.
[3] WIJSENBEEK M. Progress in the treatment of pulmonary fibrosis[J]. The Lancet Respiratory Medicine, 2020, 8(5): 424-425.
[4] UPAGUPTA C, SHIMBORI C, ALSILMI R, et al. Matrix abnormalities in pulmonary fibrosis[J]. European Respiratory Review, 2018, 27(148): 180033.
[5] KNUDSEN L, RUPPERT C, OCHS M. Tissue remodelling in pulmonary fibrosis[J]. Cell and Tissue Research, 2017, 367(3): 607-626.
[6] DENG Z J, FEAR M W, CHOI Y S, et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis[J]. The International Journal of Biochemistry & Cell Biology, 2020, 126: 105802.
[7] 蒋媛, 张倩, 吴雨丹, 等. 基质金属蛋白酶活性在3种肺疾病中的比较[J]. 常州大学学报(自然科学版), 2017, 29(2): 47-51.
[8] KULKARNI T, DE ANDRADE J, ZHOU Y, et al. Alveolar epithelial disintegrity in pulmonary fibrosis[J]. American Journal of Physiology Lung Cellular and Molecular Physiology, 2016, 311(2): 185-191.
[9] ZAAFAN M A, ZAKI H F, EL-BRAIRY A I, et al. Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: modulation of oxidative stress, fibrosis, and inflammatory parameters[J]. Experimental Lung Research, 2016, 42(8/9/10): 408-416.
[10] GAD S C. Glutathione[M]//Encyclopedia of Toxicology. Oxford: Academic Press, 2024: 1001-1002.
[11] AVERILL-BATES D A. The antioxidant glutathione[J]. Vitamins and Hormones, 2023, 121: 109-141.
[12] NIU B Y, LIAO K X, ZHOU Y X, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy[J]. Biomaterials, 2021, 277: 121110.
[13] TRAVERSO N, RICCIARELLI R, NITTI M, et al. Role of glutathione in cancer progression and chemoresistance[J]. Oxidative Medicine and Cellular Longevity, 2013, 2013: 972913.
[14] AQUILANO K, BALDELLI S, CIRIOLO M R. Glutathione: new roles in redox signaling for an old antioxidant[J]. Frontiers in Pharmacology, 2014, 5: 196-205.
[15] BANSAL A, SIMON M C. Glutathione metabolism in cancer progression and treatment resistance[J]. The Journal of Cell Biology, 2018, 217(7): 2291-2298.
[16] RIBAS V, GARCÍA-RUIZ C, FERNÁNDEZ-CHECA J C. Glutathione and mitochondria[J]. Frontiers in Pharmacology, 2014, 5: 151-159.
[17] BJØRKLUND G, PEANA M, MAES M, et al. The glutathione system in Parkinson's disease and its progression[J]. Neuroscience & Biobehavioral Reviews, 2021, 120: 470-478.
[18] ROCHETTE L, DOGON G, RIGAL E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. International Journal of Molecular Sciences, 2022, 24(1): 449-458.
[19] ZIADY A G, HANSEN J. Redox balance in cystic fibrosis[J]. The International Journal of Biochemistry & Cell Biology, 2014, 52: 113-123.
[20] JANSSEN-HEININGER Y. Glutathione, glutaredoxin and S-glutathionylation in lung disease[J]. Free Radical Biology and Medicine, 2017, 112: 3-8.
[21] PARDO A, SELMAN M. Lung fibroblasts, aging, and idiopathic pulmonary fibrosis[J]. Annals of the American Thoracic Society, 2016, 13(5): 417-421.
[22] LEBEL M, CLICHE D O, CHARBONNEAU M, et al. Invadosome formation by lung fibroblasts in idiopathic pulmonary fibrosis[J]. International Journal of Molecular Sciences, 2022, 24(1): 499-507.
[23] LI X B, BAI Z N, LI Z S, et al. Toosendanin restrains idiopathic pulmonary fibrosis by inhibiting ZEB1/CTBP1 interaction[J]. Current Molecular Medicine, 2024, 24(1): 123-133.
[24] 陈鹰娜, 李秀文, 周晓鹰. 孟河古方龙火汤治疗类风湿关节炎的机制[J]. 常州大学学报(自然科学版), 2022, 34(6): 84-92.
[25] KARAKAS D, ARI F, ULUKAYA E. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts[J]. Turkish Journal of Biology, 2017, 41(6): 919-925.
[26] VALENCIA E, MARIN A, HARDY G. Glutathione: nutritional and pharmacological viewpoints: part Ⅱ[J]. Nutrition, 2001, 17(6): 485-486.
[27] GU G Z, XIA H M, HU Q Y, et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy[J]. Biomaterials, 2013, 34(1): 196-208.
[28] BABYKUTTY S, SUBOJ P, SRINIVAS P, et al. Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways[J]. Clinical & Experimental Metastasis, 2012, 29(5): 471-492.
[29] NANA F A, HOTON D, AMBROISE J, et al. Increased expression and activation of FAK in small-cell lung cancer compared to non-small-cell lung cancer[J]. Cancers, 2019, 11(10): 1526-1534.
[30] GIULIANI C, NAPOLITANO G, BUCCI I, et al. Nf-κB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications[J]. La Clinica Terapeutica, 2001, 152(4): 249-253.
[31] TILBORGHS S, CORTHOUTS J, VERHOEVEN Y, et al. The role of nuclear factor-kappa B signaling in human cervical cancer[J]. Critical Reviews in Oncology/Hematology, 2017, 120: 141-150.
[32] AGOSTINI M, DI MARCO B, NOCENTINI G, et al. Oxidative stress and apoptosis in immune diseases[J]. International Journal of Immunopathology and Pharmacology, 2002, 15(3): 157-164.
[33] MAH L J, EL-OSTA A, KARAGIANNIS T C. Gamma H2AX: a sensitive molecular marker of DNA damage and repair[J]. Leukemia, 2010, 24(4): 679-686.
[34] MARUYAMA M, SUDO T, KASUYA Y, et al. Immunolocalization of p38 MAP kinase in mouse brain[J]. Brain Research, 2000, 887(2): 350-358.
[35] HAN J H, SUN P Q. The pathways to tumor suppression via route p38[J]. Trends in Biochemical Sciences, 2007, 32(8): 364-371.
[36] MARVALIM C, DATTA A, LEE S C. Role of p53 in breast cancer progression: an insight into p53 targeted therapy[J]. Theranostics, 2023, 13(4): 1421-1442.
[37] MENTOR S, FISHER D. Aggressive antioxidant reductive stress impairs brain endothelial cell angiogenesis and blood brain barrier function[J]. Current Neurovascular Research, 2017, 14(1): 71-81.
[38] POLJSAK B, UPUT D, MILISAV I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants[J]. Oxidative Medicine and Cellular Longevity, 2013, 2013: 956792.
[39] JÎTC G, SZ B E, TERO-VESCAN A, et al. Positive aspects of oxidative stress at different levels of the human body: a review[J]. Antioxidants, 2022, 11(3): 572-579.
[40] KOKOSZKO A, LEWIN'SKI A, KARBOWNIK-LEWIN'SKA M. The role of growth hormone and insulin-like growth factor I in oxidative processes[J]. Endokrynologia Polska, 2008, 59(6): 496-501.