[1]蒋宏伟,刘健鹏,王新杰,等.随机森林优化的静动态耦合模型在滑坡位移预测中的应用[J].常州大学学报(自然科学版),2024,36(03):80-92.[doi:10.3969/j.issn.2095-0411.2024.03.009]
 JIANG Hongwei,LIU Jianpeng,WANG Xinjie,et al.Application of static dynamic coupling model optimized by random forest in landslide displacement prediction[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):80-92.[doi:10.3969/j.issn.2095-0411.2024.03.009]
点击复制

随机森林优化的静动态耦合模型在滑坡位移预测中的应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年03期
页码:
80-92
栏目:
土木工程
出版日期:
2024-05-28

文章信息/Info

Title:
Application of static dynamic coupling model optimized by random forest in landslide displacement prediction
文章编号:
2095-0411(2024)03-0080-13
作者:
蒋宏伟 刘健鹏 王新杰 陈春红 刘 惠
常州大学 城市建设学院, 江苏 常州 213164
Author(s):
JIANG Hongwei LIU Jianpeng WANG Xinjie CHEN Chunhong LIU Hui
School of Urban Construction, Changzhou University, Changzhou 213164, China
关键词:
滑坡位移预测 随机森林 长短期记忆神经网络 支持向量回归 算法集成
Keywords:
landslide displacement prediction random forest long short-term memory neural network support vector regression algorithm integrated
分类号:
X 933
DOI:
10.3969/j.issn.2095-0411.2024.03.009
文献标志码:
A
摘要:
以重庆市奉节县生基包滑坡为例,首先采用静态的支持向量回归(SVR)机器学习算法和动态的长短期记忆神经网络(LSTM)机器学习算法对滑坡位移进行预测; 其次引入随机森林(RF)算法,在输入因素筛选的基础上,对SVR模型和LSTM模型的预测结果进行更优解分类预测; 最后通过RF模型输出概率值,对静动态耦合模型(SVR-LSTM)进行权重赋值,得到RF优化的SVR-LSTM滑坡位移预测模型。结果表明LSTM模型预测整体优于SVR模型,RF优化的SVR-LSTM滑坡位移预测模型集成了静态SVR与动态LSTM预测模型的优势,其预测性能与单一的SVR模型和LSTM模型相比更优。研究提供了一种滑坡位移预测模型集成的思路,为三峡库区的地质灾害预测预报提供借鉴和参考。
Abstract:
This paper took the Shengjibao landslide in Fengjie county, Chongqing as an example. A static machine learning algorithm called the support vector regression(SVR)and a dynamic machine learning algorithm called the long short-term memory neural network(LSTM)were proposed to predict the landslide displacement. Then, the random forest(RF)algorithm was introduced to classify and predict the optimal solution between the SVR model and the LSTM model. Finally, the RF-optimized SVR-LSTM landslide displacement prediction model was obtained by assigning weights to the static-dynamic coupling model(SVR-LSTM)based on the probability values of the output from the RF model. The results show that LSTM model has better performance than the SVR model. RF-optimized SVR-LSTM landslide displacement prediction model integrates the advantages of static and dynamic prediction models, and its prediction performance is better than that of the SVR model and the LSTM model, respectively. This study provides an idea of integrating landslide displacement prediction model, which can provide reference for geological disaster prediction in the Three Gorges Reservoir area.

参考文献/References:

[1] 许强, 黄润秋, 李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004, 19(3): 478-483.
[2] SAITO M. Research on forecasting the time of occurrence of slope failure[J]. Soils and Foundations, 1969, 17(2): 537-541.
[3] SASSA K, PICARELLI L, YIN Y P. Monitoring, prediction and early warning[M]//Landslides-Disaster Risk Reduction. Heidelberg: Springer Berlin Heidelberg, 2008: 351-375.
[4] MA J W, TANG H M, LIU X, et al. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2018, 15(6): 1145-1153.
[5] 吴鹏, 陈信华, 马宇超, 等. 基于优化深度学习的电动桥铸件表面瑕疵识别方法[J]. 常州大学学报(自然科学版), 2022, 34(5): 65-71.
[6] ZENG T R, JIANG H W, LIU Q L, et al. Landslide displacement prediction based on variational mode decomposition and MIC-GWO-LSTM model[J].Stochastic Environmental Research and Risk Assessment, 2022, 36(5): 1353-1372.
[7] 徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092.
[8] DU J, YIN K L, LACASSE S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China[J]. Landslides, 2013, 10(2): 203-218.
[9] 葛安杰, 屠懿, 彭剑. 基于机器学习的含缺陷PE管道承载能力研究[J]. 常州大学学报(自然科学版), 2022, 34(6): 34-40.
[10] 梁万金, 王永. Gauss-Newton-ANN算法在滑坡位移预测中的应用[J]. 水电能源科学, 2009, 27(4): 67-69.
[11] 曾耀, 李春峰. 基于RBF多变量时间序列的滑坡位移预测研究[J]. 长江科学院院报, 2012, 29(4): 30-34.
[12] 彭令, 牛瑞卿, 吴婷. 时间序列分析与支持向量机的滑坡位移预测[J]. 浙江大学学报(工学版), 2013, 47(9): 1672-1679.
[13] 蒋宏伟. 万州区滑坡灾害位移与库水位及降雨响应关系研究[D]. 武汉: 中国地质大学, 2021.
[14] XU S, NIU R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China[J]. Computers & Geosciences, 2018, 111: 87-96.
[15] HUANG F M, YIN K L, ZHANG G R, et al. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory[J]. Environmental Earth Sciences, 2016, 75(20): 1376.
[16] GUO Z Z, CHEN L X, GUI L, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model[J]. Landslides, 2020, 17(3): 567-583.
[17] MIAO F S, WU Y P, XIE Y H, et al. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model[J]. Landslides, 2018, 15(3): 475-488.
[18] 周超, 殷坤龙, 黄发明. 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36(9): 2674-2680.
[19] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391.
[20] 李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006.
[21] 杨背背, 殷坤龙, 杜娟. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 2018, 37(10): 2334-2343.
[22] JIANG H W, LI Y Y, ZHOU C, et al. Landslide displacement prediction combining LSTM and SVR algorithms: a case study of Shengjibao landslide from the Three Gorges Reservoir area[J]. Applied Sciences. 2020, 10(21): 18-25.
[23] ZHOU C, YIN K L, CAO Y, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 2016, 204: 108-120.
[24] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645-6649.
[25] 王晓华. TensorFlow+Kreas自然语言处理实战[M]. 北京: 清华大学出版社, 2021.
[26] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
[27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[28] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[29] TIEN B D, TUAN T A, HOANG N D, et al. Spatial prediction of rainfall-induced landslides for the Laocai area(Vietnam)using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization[J].Landslides, 2017, 14(2): 447-458.
[30] ELBISY M S. Sea wave parameters prediction by support vector machine using a genetic algorithm[J]. Journal of Coastal Research, 2015, 31(4): 892-899.
[31] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
[32] EFRON B. Bootstrap methods: another look at the jackknife[J]. The Annals of Statistics, 1979, 7(1): 1-26.
[33] 王健峰, 张磊, 陈国兴, 等. 基于改进的网格搜索法的SVM参数优化[J]. 应用科技, 2012, 39(3): 28-31.

相似文献/References:

[1]宫闻浩,李朝玮,李 栋,等.基于异质集成的井漏预警模型[J].常州大学学报(自然科学版),2024,36(02):39.[doi:10.3969/j.issn.2095-0411.2024.02.005]
 GONG Wenhao,LI Chaowei,LI Dong,et al.Lost circulation early warning model based on heterogeneous integration[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):39.[doi:10.3969/j.issn.2095-0411.2024.02.005]

备注/Memo

备注/Memo:
收稿日期: 2024-03-13。
基金项目: 常州大学人才引进资助项目(ZMF22020036)。
作者简介: 蒋宏伟(1992—), 男, 江苏泰兴人, 博士, 讲师。E-mail: jianghongwei@cczu.edu.cn
更新日期/Last Update: 1900-01-01