参考文献/References:
[1] 许强, 黄润秋, 李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004, 19(3): 478-483.
[2] SAITO M. Research on forecasting the time of occurrence of slope failure[J]. Soils and Foundations, 1969, 17(2): 537-541.
[3] SASSA K, PICARELLI L, YIN Y P. Monitoring, prediction and early warning[M]//Landslides-Disaster Risk Reduction. Heidelberg: Springer Berlin Heidelberg, 2008: 351-375.
[4] MA J W, TANG H M, LIU X, et al. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2018, 15(6): 1145-1153.
[5] 吴鹏, 陈信华, 马宇超, 等. 基于优化深度学习的电动桥铸件表面瑕疵识别方法[J]. 常州大学学报(自然科学版), 2022, 34(5): 65-71.
[6] ZENG T R, JIANG H W, LIU Q L, et al. Landslide displacement prediction based on variational mode decomposition and MIC-GWO-LSTM model[J].Stochastic Environmental Research and Risk Assessment, 2022, 36(5): 1353-1372.
[7] 徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092.
[8] DU J, YIN K L, LACASSE S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China[J]. Landslides, 2013, 10(2): 203-218.
[9] 葛安杰, 屠懿, 彭剑. 基于机器学习的含缺陷PE管道承载能力研究[J]. 常州大学学报(自然科学版), 2022, 34(6): 34-40.
[10] 梁万金, 王永. Gauss-Newton-ANN算法在滑坡位移预测中的应用[J]. 水电能源科学, 2009, 27(4): 67-69.
[11] 曾耀, 李春峰. 基于RBF多变量时间序列的滑坡位移预测研究[J]. 长江科学院院报, 2012, 29(4): 30-34.
[12] 彭令, 牛瑞卿, 吴婷. 时间序列分析与支持向量机的滑坡位移预测[J]. 浙江大学学报(工学版), 2013, 47(9): 1672-1679.
[13] 蒋宏伟. 万州区滑坡灾害位移与库水位及降雨响应关系研究[D]. 武汉: 中国地质大学, 2021.
[14] XU S, NIU R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China[J]. Computers & Geosciences, 2018, 111: 87-96.
[15] HUANG F M, YIN K L, ZHANG G R, et al. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory[J]. Environmental Earth Sciences, 2016, 75(20): 1376.
[16] GUO Z Z, CHEN L X, GUI L, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model[J]. Landslides, 2020, 17(3): 567-583.
[17] MIAO F S, WU Y P, XIE Y H, et al. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model[J]. Landslides, 2018, 15(3): 475-488.
[18] 周超, 殷坤龙, 黄发明. 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36(9): 2674-2680.
[19] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391.
[20] 李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006.
[21] 杨背背, 殷坤龙, 杜娟. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 2018, 37(10): 2334-2343.
[22] JIANG H W, LI Y Y, ZHOU C, et al. Landslide displacement prediction combining LSTM and SVR algorithms: a case study of Shengjibao landslide from the Three Gorges Reservoir area[J]. Applied Sciences. 2020, 10(21): 18-25.
[23] ZHOU C, YIN K L, CAO Y, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 2016, 204: 108-120.
[24] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645-6649.
[25] 王晓华. TensorFlow+Kreas自然语言处理实战[M]. 北京: 清华大学出版社, 2021.
[26] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
[27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[28] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[29] TIEN B D, TUAN T A, HOANG N D, et al. Spatial prediction of rainfall-induced landslides for the Laocai area(Vietnam)using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization[J].Landslides, 2017, 14(2): 447-458.
[30] ELBISY M S. Sea wave parameters prediction by support vector machine using a genetic algorithm[J]. Journal of Coastal Research, 2015, 31(4): 892-899.
[31] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
[32] EFRON B. Bootstrap methods: another look at the jackknife[J]. The Annals of Statistics, 1979, 7(1): 1-26.
[33] 王健峰, 张磊, 陈国兴, 等. 基于改进的网格搜索法的SVM参数优化[J]. 应用科技, 2012, 39(3): 28-31.