[1]姚猛,吕佳仪,陈旭阳,等.表面活性剂强化空气扰动中气流与表面活性剂迁移行为[J].常州大学学报(自然科学版),2024,36(04):27-36.[doi:10.3969/j.issn.2095-0411.2024.04.004]
 YAO Meng,LYU Jiayi,CHEN Xuyang,et al.Migration behaviors of airflow and surfactant in the surfactant-enhanced air sparging process[J].Journal of Changzhou University(Natural Science Edition),2024,36(04):27-36.[doi:10.3969/j.issn.2095-0411.2024.04.004]
点击复制

表面活性剂强化空气扰动中气流与表面活性剂迁移行为()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年04期
页码:
27-36
栏目:
环境科学与工程
出版日期:
2024-07-28

文章信息/Info

Title:
Migration behaviors of airflow and surfactant in the surfactant-enhanced air sparging process
文章编号:
2095-0411(2024)04-0027-10
作者:
姚猛12吕佳仪1陈旭阳1袁迁1薛金娟1王明新12
(1.常州大学 环境科学与工程学院, 江苏 常州 213164; 2.江苏石油化工安全与环保工程研究中心(常州大学), 江苏 常州 213164)
Author(s):
YAO Meng12 LYU Jiayi1 CHEN Xuyang1 YUAN Qian1 XUE Jinjuan1 WANG Mingxin12
(1.School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; 2.Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou University, Changzhou 213164, China)
关键词:
表面活性剂 空气扰动 砾石含水层 气流 迁移行为
Keywords:
surfactant air sparging gravel aquifer airflow migration behavior
分类号:
X 523
DOI:
10.3969/j.issn.2095-0411.2024.04.004
文献标志码:
A
摘要:
研究通过光透射可视化和染色示踪技术,探究了砾石含水层表面活性剂强化空气扰动(SEAS)过程中气流与表面活性剂迁移行为。结果表明:在一定曝气流量范围内,相同曝气流量SEAS过程中的空气饱和度是空气扰动(AS)过程中的2.4倍以上。不同曝气流量SEAS过程中气流影响区域(ZOI)面积变化并不明显,ZOI呈现明显的锥形分布,且气体流量呈高斯分布。相同曝气流量,由于表面活性剂的稳泡及再分布作用,与AS过程相比,SEAS能够一定程度增加ZOI面积。此外,SEAS过程中表面活性剂的再分布,增大了其作用范围,但降低了目标区域表面活性剂浓度,增加了污染羽范围扩大的风险。上述研究有助于深入理解SEAS强化修复机制及提升挥发性有机污染物(VCOs)去除效率。
Abstract:
Technologies of light transmission visualization and staining tracer were used to investigate the migration behavior of the airflow and surfactant during surfactant enhanced air sparging(SEAS)remediation in the gravel aquifer. Experimental results showed that the air saturation in SEAS was 2.4 times higher than that in AS when the air injection rate was the same within a certain air injection rate. Under different air injection rates, the zone of influence(ZOI)area did not significantly change, and the ZOI presented obvious conical shape, and the air flowrate presented Gaussian distribution. Under the same air injection rate, compared with AS process, the ZOI area slightly increased due to the foam stabilization effect and surfactant redistribution. In addition, the surfactant redistribution in SEAS process increased its action range, but reduced the surfactant concentration in the target zone, which increased the risk of pollution plume expansion. These studies are beneficial to in-depth understanding the enhanced remediation mechanism of SEAS and improving the VCOs removal efficiency.

参考文献/References:

[1] CAO C K, YUAN Q, WANG C, et al. Controlled synthesis of hierarchical tungsten oxide hydrates for efficient acetone detection[J]. Applied Surface Science, 2022, 604: 154651.
[2] CIAMPI P, ESPOSITO C, CASSIANI G, et al. A field-scale remediation of residual light non-aqueous phase liquid(LNAPL): chemical enhancers for pump and treat[J]. Environmental Science and Pollution Research International, 2021, 28(26): 35286-35296.
[3] FU Y F, QIN C Y, GAO S, et al. Aquifer flushing using a SDS/1-butanol based in situ microemulsion: performance and mechanism for the remediation of nitrobenzene contamination[J]. Journal of Hazardous Materials, 2022, 424: 127409.
[4] JIA A Y, HONG M, WEI T, et al. Remediation of coal tar-contaminated soil by smoldering combustion using vegetable oils as supplemental fuel[J]. Journal of Environmental Engineering, 2022, 148(9): 04022054.
[5] WANG X P, REN L L, LONG T, et al. Migration and remediation of organic liquid pollutants in porous soils and sedimentary rocks: a review[J]. Environmental Chemistry Letters, 2023, 21(1): 479-496.
[6] XU L, YAN L X, ZHA F S, et al. Remediation characteristics of surfactant-enhanced air sparging(SEAS)technology on volatile organic compounds contaminated soil with low permeability[J]. Journal of Contaminant Hydrology, 2022, 250: 104049.
[7] YAO M, YUAN Q, QU D, et al. Effects of airflow rate distribution and nitrobenzene removal in an aquifer with a low-permeability lens during surfactant-enhanced air sparging[J]. Journal of Hazardous Materials, 2022, 437: 129383.
[8] LIU R X, YANG X R, XIE J Y, et al. Experimental investigation on the effects of ethanol-enhanced steam injection remediation in nitrobenzene-contaminated heterogeneous aquifers[J]. Applied Sciences, 2021, 11(24): 12029.
[9] HE H P, SUN M, WU D L, et al. Cu(III)generation and air sparging extend catalytic effectiveness of Cu2S/H2O2 from neutral to acidic condition: performance and mechanism in comparison with CuS/H2O2[J]. Journal of Cleaner Production, 2021, 278: 123572.
[10] FERRÁNDEZ-GÓMEZ B, SÁNCHEZ A, JORDÁ J D, et al. Effectiveness of oxygen-saturated seawater injections and air sparging technologies in remediation of coastal marine sediments from sludge[J]. Environmental Geochemistry and Health, 2021, 43(12): 4975-4986.
[11] 秦传玉, 赵勇胜, 郑苇. 表面活性剂强化空气扰动技术修复机理[J]. 土木建筑与环境工程, 2012, 34(2): 138-142.
[12] LI S, FENG D, LIU J C, et al. Surfactant-enhanced reduction of soil-adsorbed nitrobenzene by carbon-coated nZVI: enhanced desorption and mechanism[J]. The Science of the Total Environment, 2023, 856: 159186.
[13] 谢程程, 庞明军. 质量浓度及剪切率对表面活性剂流变特性的影响[J]. 常州大学学报(自然科学版), 2019, 31(2): 57-66.
[14] LIU J, LI W Y, CHEN H X, et al. Applications of functional nanoparticle-stabilized surfactant foam in petroleum-contaminated soil remediation[J]. Journal of Hazardous Materials, 2023, 443: 130267.
[15] 胡玉林. 低浓度表面活性剂在自然多孔介质中的迁移行为研究[D]. 长沙: 湖南大学, 2017.
[16] QIN C Y, ZHAO Y S, ZHENG W. The influence zone of surfactant-enhanced air sparging in different media[J]. Environmental Technology, 2014, 35(9/10/11/12): 1190-1198.
[17] WANG Q, GUO S W, ALI M, et al. Thermally enhanced bioremediation: a review of the fundamentals and applications in soil and groundwater remediation[J]. Journal of Hazardous Materials, 2022, 433: 128749.
[18] 姚猛. AS过程中非均质地层界面气流迁移机制及对修复效果影响研究[D]. 长春: 吉林大学, 2021.
[19] 姚猛. 原位空气扰动修复含水层中气流分布机理及表面活性剂强化效果研究[D]. 长春: 吉林大学, 2018.
[20] KIM H, SOH H E, ANNABLE M D, et al. Surfactant-enhanced air sparging in saturated sand[J]. Environmental Science & Technology, 2004, 38(4): 1170-1175.
[21] 常月华, 姚猛, 赵勇胜. 表面活性剂强化原位空气扰动修复实验研究: 影响区域及气流分布变化规律[J]. 中国环境科学, 2018, 38(7): 2585-2592.
[22] 郑苇, 赵勇胜, 秦传玉, 等. 表面活性剂强化空气扰动修复污染地下水影响区域研究[J]. 环境科学学报, 2011, 31(1): 102-106.
[23] KIM H, CHOI K M, MOON J W, et al. Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand[J]. Journal of Contaminant Hydrology, 2006, 88(1/2): 23-35.

相似文献/References:

[1]周诗岽,张晓萍,王树立,等.含表面活性剂的水合反应液表面张力的测定[J].常州大学学报(自然科学版),2013,(02):56.[doi:10.3969/j.issn.2095-0411.2013.02.014]
 ZHOU Shi dong,ZHANG Xiao ping,WANG Shu li,et al.Detection Surface Tension of Gas Hydrate ReactionLiquid with Surfactants[J].Journal of Changzhou University(Natural Science Edition),2013,(04):56.[doi:10.3969/j.issn.2095-0411.2013.02.014]
[2]罗士平,周国平,张 齐.油田含油污泥处理工艺条件的研究[J].常州大学学报(自然科学版),2003,(01):24.
 LUO Shi -ping,ZHOU Guo -ping,ZHANG Qi.Study on Process Conditions of Treatment of Petroleum-contaminated Soi l[J].Journal of Changzhou University(Natural Science Edition),2003,(04):24.

备注/Memo

备注/Memo:
收稿日期: 2024-01-30。
基金项目: 国家自然科学基金青年科学基金项目(42207085); 常州市科技计划资助项目(CJ20220160)。
作者简介: 姚猛(1993—), 男, 江苏徐州人, 博士, 讲师。 E-mail: yaomeng@cczu.edu.cn
更新日期/Last Update: 1900-01-01