[1]徐正晓,李猛,李兆敏,等.裂缝泡沫流动特征及改进Dijkstra算法优势通道预测[J].常州大学学报(自然科学版),2024,36(04):46-54.[doi:10.3969/j.issn.2095-0411.2024.04.006]
 XU Zhengxiao,LI Meng,LI Zhaomin,et al.Characteristics of foam flow in fractures and prediction of preferred paths by improved Dijkstra algorithm[J].Journal of Changzhou University(Natural Science Edition),2024,36(04):46-54.[doi:10.3969/j.issn.2095-0411.2024.04.006]
点击复制

裂缝泡沫流动特征及改进Dijkstra算法优势通道预测()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年04期
页码:
46-54
栏目:
石油与天然气工程
出版日期:
2024-07-28

文章信息/Info

Title:
Characteristics of foam flow in fractures and prediction of preferred paths by improved Dijkstra algorithm
文章编号:
2095-0411(2024)04-0046-09
作者:
徐正晓1李猛1李兆敏2李宾飞2陶磊1刘洋3于传康4
(1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.中国石油大学(华东)石油工程学院, 山东 青岛 266580; 3.中国石油长庆油田分公司 油气工艺研究院, 陕西 西安 710018; 4.山东石油化工学院 石油工程学院, 山东 东营 257000)
Author(s):
XU Zhengxiao1 LI Meng1 LI Zhaomin2 LI Binfei2 TAO Lei1 LIU Yang3 YU Chuankang4
(1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; 2.School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, China; 3.Oil and Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi'an 710018, China; 4.School of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257000, China)
关键词:
裂缝 泡沫 流动特征 改进Dijkstra算法 优势通道
Keywords:
fracture foam flow characteristic improved Dijkstra algorithm preferred path
分类号:
TE 357
DOI:
10.3969/j.issn.2095-0411.2024.04.006
文献标志码:
A
摘要:
泡沫在复杂缝网中的流动规律尚不明确,利用多种组合可视化裂缝模型,观察了泡沫在裂缝中的流动特征,采用改进的Dijkstra算法确定裂缝网络节点的加权图,预测了泡沫流动路径。结果表明,泡沫体积分数为90%时其流动阻力达到最大,泡沫在不同开度的平行裂缝流动时,优先在大开度裂缝中流动,在小开度的裂缝中存在气体滞留。在复杂缝网模型中,基于泡沫流体的波及范围和调堵机制对Dijkstra算法进行改进,模拟结果能够在一定程度上与实验结果进行拟合。这些发现验证了泡沫在裂缝型油藏中流动时考虑裂缝的必要性。
Abstract:
Foam flow characteristics in complex fracture networks are still unclear. In this study, a variety of combined visual fracture models were used to observe the flow characteristics of foam in the fracture. Then, the improved Dijkstra algorithm was used to determine the weighted graph of the fracture network nodes, and the preferred flow paths of the foam were predicted. The results show that the flow resistance reaches the maximum when the foam volume fraction is 90%. When the foam flows in parallel fractures with different openings, it flows preferentially in the fractures with large openings, and there is gas retention in cracks with small openings. In the complex fracture network model, the Dijkstra algorithm is improved based on the foam fluid's sweeping range and plugging mechanism, and the simulation results can be fitted to the experimental results to a certain extent. These findings reflect the necessity of considering fractures when foam flows in reservoirs.

参考文献/References:

[1] 李兆敏, 徐正晓, 李宾飞, 等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 118-127.
[2] 王殿生. 缝洞型介质流动机理实验与数值模拟研究[D]. 北京: 中国石油大学, 2009.
[3] 张烈辉, 李成勇, 赵玉龙, 等. 裂缝性碳酸盐岩油气藏渗流机理研究进展[J]. 地球科学, 2017, 42(8): 1273-1286.
[4] 张健, 王金意, 荆铁亚, 等. 天然裂缝角度对水力压裂的影响数值分析[J]. 常州大学学报(自然科学版), 2020, 32(3): 34-39.
[5] LI R F, HIRASAKI G J, MILLER C A, et al. Wettability alteration and foam mobility control in a layered, 2D heterogeneous sandpack[J]. SPE Journal, 2012, 17(4): 1207-1220.
[6] KIM J S, DONG Y, ROSSEN W R. Steady-state flow behavior of CO2 foam[J]. SPE Journal, 2005, 10(4): 405-415.
[7] 庞明军, 张展, 谢程程. 气泡体积分数对液相湍流流场和减阻率的影响[J]. 常州大学学报(自然科学版), 2019, 31(4): 57-69.
[8] ROSSEN W R. Foam generation at layer boundaries in porous media[J]. SPE Journal, 1999, 4(4): 409-412.
[9] 王明梅, 常志东, 习海玲, 等. 水基泡沫的稳定性评价技术及影响因素研究进展[J]. 化工进展, 2005, 24(7): 723-728.
[10] 刘珑, 范洪富. 氮气泡沫驱油研究进展[J]. 油田化学, 2019, 36(2): 353-360.
[11] HOU J R, LUO M, ZHU D Y. Foam-EOR method in fractured-vuggy carbonate reservoirs: mechanism analysis and injection parameter study[J]. Journal of Petroleum Science and Engineering, 2018, 164: 546-558.
[12] CHEN L K, HUANG M M, LI Z M, et al. Experimental study on the characteristics of foam flow in fractures[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106663.
[13] GAUTEPLASS J, CHAUDHARY K, KOVSCEK A R, et al. Pore-level foam generation and flow for mobility control in fractured systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468: 184-192.
[14] TANG Y B, LI M, LIU X J, et al. Pore-scale heterogeneity, flow channeling and permeability: network simulation and comparison to experimental data[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 535: 122533.
[15] LIU S, DOU X X, ZENG Q D, et al. Critical parameters of the Jamin effect in a capillary tube with a contracted cross section[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107635.

相似文献/References:

[1]黄 珑.结构损伤对结构侧向振动影响的试验研究[J].常州大学学报(自然科学版),2009,(02):41.
 HUANG Long.Experimental Study of Side Direction Dynamic Response Affected by Structural Damage[J].Journal of Changzhou University(Natural Science Edition),2009,(04):41.
[2]李雪.低渗透油藏储层特征及形成机理分析[J].常州大学学报(自然科学版),2015,(03):39.[doi:10.3969/j.issn.2095-0411.2015.03.008]
 LI Xue.Analysis on Reservoir Characteristics and Formation Mechanism of Low Permeability Reservoirs[J].Journal of Changzhou University(Natural Science Edition),2015,(04):39.[doi:10.3969/j.issn.2095-0411.2015.03.008]

备注/Memo

备注/Memo:
收稿日期: 2024-03-21。
基金项目: 江苏省高等学校自然科学研究面上项目(23KJB440001); 常州大学科研启动基金资助项目(ZMF23020202); 教育部产学合作协同育人项目(231002394313828)。
作者简介: 徐正晓(1995—), 男, 山东阳谷人, 博士, 讲师。E-mail: xzx@cczu.edu.cn
更新日期/Last Update: 1900-01-01