[1]常爱莲,黄远翔,李倩倩.管道中重质原油流变特性及流动传热规律[J].常州大学学报(自然科学版),2024,36(04):55-62.[doi:10.3969/j.issn.2095-0411.2024.04.007]
 CHANG Ailian,HUANG Yuanxiang,LI Qianqian.Rheological characteristics and flow laws of heavy crude oil in a pipe[J].Journal of Changzhou University(Natural Science Edition),2024,36(04):55-62.[doi:10.3969/j.issn.2095-0411.2024.04.007]
点击复制

管道中重质原油流变特性及流动传热规律()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年04期
页码:
55-62
栏目:
机械与动力工程
出版日期:
2024-07-28

文章信息/Info

Title:
Rheological characteristics and flow laws of heavy crude oil in a pipe
文章编号:
2095-0411(2024)04-0055-08
作者:
常爱莲12黄远翔1李倩倩12
(1.常州大学 机械与轨道交通学院, 江苏 常州 213164; 2.江苏省能源动力高端装备工程研究中心(常州大学), 江苏 常州 213164)
Author(s):
CHANG Ailian12 HUANG Yuanxiang1 LI Qianqian12
(1.School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; 2.Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China)
关键词:
重质原油 管道 分数阶本构模型 数值模拟 流动与传热
Keywords:
heavy crude oil pipe fractional constitutive model numerical simulation flow and heat transfer
分类号:
TE 83; O 35
DOI:
10.3969/j.issn.2095-0411.2024.04.007
文献标志码:
A
摘要:
因重质原油流动过程存在历史记忆性和全域相关性,经典牛顿本构模型无法有效刻画其流变特性。建立了能够有效刻画重质原油流变特性的空间分数阶本构模型,并基于有限元法数值模拟了原油流动与传热过程。主要研究了空间分数阶模型阶数对原油流动与传热的影响,分析了平均努塞尔数与摩擦阻力系数随着分数阶阶数的变化规律; 并比较了管壁热边界条件分别为常壁温与壁面热流密度下,原油传热过程中局部努塞尔数和对流换热系数的变化情况。研究结果表明:随阶数α(α>1)的增大,原油流变性能逐渐向剪切变稀转变,加快了原油流动速度,同时原油传热性能增强,有助于原油的输运效率增加。此外,在壁面热通量条件下的传热效率高于常壁温条件下的传热效率。因此深入研究原油的流变特性以及流动与传热规律,可为提高管道原油输运效率与经济运行提供理论指导。
Abstract:
The flow process of heavy crude oil has a strong historical memory and global correlation, and the classical Newton constitutive model cannot effectively describe its rheological characteristics. In this paper, a spatial fractional constitutive model was established to well describe the rheological properties of heavy crude oil. Meanwhile, the flow and heat transfer processes were numerically simulated based on the finite element method(FEM). The influence of the fractional model order on the flow and heat transfer of crude oil was mainly studied, and the variations of the average Nusselt number and the friction resistance coefficient with the spatial fractional order were analyzed. In addition, the changes of local Nusselt number and convective heat transfer coefficient during the heat transfer process of crude oil were compared under two thermal boundary conditions, namely, the constant wall temperature and the heat flux. The result showed that the rheological property of crude oil was known as shear thinning; meanwhile, the flow speed of crude oil was obviously improved and the heat transfer performance was effectively enhanced with the increase of order α(α>1). Therefore, the rheological characteristics and flow as well as heat transfer laws of crude oil were deeply studied, which can provide theoretical guidance for further improving crude oil transport efficiency and economic operation in a pipe.

参考文献/References:

[1] SOUAS F, SAFRI A, BENMOUNAH A. A review on the rheology of heavy crude oil for pipeline transportation[J]. Petroleum Research, 2021, 6(2): 116-136.
[2] 金云旺. 东辛原油管道流动改性输送技术研究[D]. 东营: 中国石油大学(华东), 2017.
[3] 张栋, 张健, 刘硕, 等. 超稠原油的流变学特性及流动特征研究[J]. 水动力学研究与进展A辑, 2016, 31(2): 145-150.
[4] DONG H, ZHAO J, ZHAO W Q, et al. Study on the thermal characteristics of crude oil pipeline during its consecutive process from shutdown to restart[J]. Case Studies in Thermal Engineering, 2019, 14: 100434.
[5] HASAN S W, GHANNAM M T, ESMAIL N. Heavy crude oil viscosity reduction and rheology for pipeline transportation[J]. Fuel, 2010, 89(5): 1095-1100.
[6] DHIMAN A K, CHHABRA R P, SHARMA A, et al. Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime[J]. Numerical Heat Transfer, Part A: Applications, 2006, 49(7): 717-731.
[7] KUMAR R, BORA G S, BANERJEE S, et al. Application of naturally extracted surfactant from Madhuca longifolia to improve the flow properties of heavy crude oil through horizontal pipeline[J]. Journal of Petroleum Science and Engineering, 2018, 168: 178-189.
[8] SRIKANTH S, DHIMAN A K, BIJJAM S. Confined flow and heat transfer across a triangular cylinder in a channel[J]. International Journal of Thermal Sciences, 2010, 49(11): 2191-2200.
[9] NADEEM S. General periodic flows of fractional Oldroyd-B fluid for an edge[J]. Physics Letters A, 2007, 368(3/4): 181-187.
[10] 孙洪广, 常爱莲, 陈文, 等. 反常扩散: 分数阶导数建模及其在环境流动中的应用[J]. 中国科学: 物理学 力学 天文学, 2015, 45(10): 8-22.
[11] SUN H G, ZHANG Y, WEI S, et al. A space fractional constitutive equation model for non-Newtonian fluid flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 409-417.
[12] GUPTA A K, SHARMA A, CHHABRA R P, et al. Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: momentum and heat-transfer characteristics[J]. Industrial & Engineering Chemistry Research, 2003, 42(22): 5674-5686.
[13] TRIPATHI A M, GHOSH S K, SARKAR S. Two dimensional unsteady flow past a square cylinder: influence of proximal plane wall and power-law index[J]. Ocean Engineering, 2021, 240: 109896.
[14] 周发戚, 邓贵文, 付双成, 等. 油水分离碟式分离机内油滴破碎与聚并过程的数值分析[J]. 常州大学学报(自然科学版), 2022, 34(2): 65-73.
[15] 弓晓晶, 许敬. 浮动催化气相沉积反应器内温度与流场动力学模拟[J]. 常州大学学报(自然科学版), 2022, 34(4): 1-6.
[16] CHURCHILL S W, OZOE H. Correlations for laminar forced convection with uniform heating in flow over a plate and in developing and fully developed flow in a tube[J]. Journal of Heat Transfer, 1973, 95(1): 78-84.
[17] POURARIA H, SEO J K, PAIK J K. Numerical modelling of two-phase oil-water flow patterns in a subsea pipeline[J]. Ocean Engineering, 2016, 115: 135-148.

相似文献/References:

[1]郑?? 志,王树立,赵书华,等.天然气输送管道调压过程的? 分析[J].常州大学学报(自然科学版),2009,(03):33.
 ZHEN G Zhi,WANG Shu- li,ZHAO Shu- hua,et al.Exergy Analysis of the Pressure Reduction Process of Natural Gas Pipeline[J].Journal of Changzhou University(Natural Science Edition),2009,(04):33.
[2]王晓宇.管道泄漏检测及定位技术的研究现状与发展方向[J].常州大学学报(自然科学版),2008,(03):74.
 WANG Xiao- y u,WANG Shu- li.Status Quo of the Study and Direction of Pipeline Leak Detection and Location[J].Journal of Changzhou University(Natural Science Edition),2008,(04):74.
[3]赵会军,等.大落差顺序输送管道混油PH OENICS 模拟研究[J].常州大学学报(自然科学版),2007,(01):41.
 ZHAO Hui- jun,ZHA NG Qing- song,et al.PHOENICS- Based Numerical Study of Concentration Distribution of Contamination on Elevation Difference Batch Pipeline[J].Journal of Changzhou University(Natural Science Edition),2007,(04):41.

备注/Memo

备注/Memo:
收稿日期: 2024-04-30。
基金项目: 江苏省自然科学青年基金资助项目(BK20220615); 江苏省高等学校基础科学面上资助项目(22KJB130001); 江苏省能源动力高端装备工程研究中心开放课题基金资助项目(JSNYDL-202208)。
作者简介: 常爱莲(1991—), 女, 安徽滁州人, 博士, 讲师。通信联系人: 李倩倩(1993—), E-mail: liqianqian@cczu.edu.cn
更新日期/Last Update: 1900-01-01