[1]陶平,刘红梅,彭剑,等.基于纳米压痕试验的氢致双相不锈钢微力学性能变化[J].常州大学学报(自然科学版),2024,36(04):63-70.[doi:10.3969/j.issn.2095-0411.2024.04.008]
 TAO Ping,LIU Hongmei,PENG Jian,et al.Hydrogen-induced micromechanical property evolution of duplex stainless steel based on nanoindentation[J].Journal of Changzhou University(Natural Science Edition),2024,36(04):63-70.[doi:10.3969/j.issn.2095-0411.2024.04.008]
点击复制

基于纳米压痕试验的氢致双相不锈钢微力学性能变化()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年04期
页码:
63-70
栏目:
机械与动力工程
出版日期:
2024-07-28

文章信息/Info

Title:
Hydrogen-induced micromechanical property evolution of duplex stainless steel based on nanoindentation
文章编号:
2095-0411(2024)04-0063-08
作者:
陶平12刘红梅123彭剑12刘雪东12
(1.常州大学 机械与轨道交通学院, 江苏 常州 213164; 2.江苏省绿色过程装备重点实验室(常州大学), 江苏 常州 213164; 3.江苏梅兰化工有限公司, 江苏 泰州 225300)
Author(s):
TAO Ping12 LIU Hongmei123 PENG Jian12 LIU Xuedong12
(1.School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; 2.Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China; 3.Jiangsu Meilan Chemical Co., Ltd., Taizhou 225300, China)
关键词:
双相不锈钢 氢脆 纳米压痕 纳米硬度
Keywords:
duplex stainless steel hydrogen embrittlement nanoindentation nanohardness
分类号:
TG 115
DOI:
10.3969/j.issn.2095-0411.2024.04.008
文献标志码:
A
摘要:
通过纳米压痕方法对氢致铁素体-奥氏体双相不锈钢中微观力学性能变化行为进行研究,试验选用2205双相不锈钢为研究对象,通过不同充氢时间下获得的铁素体相和奥氏体相的压痕载荷-位移曲线,分析了铁素体相和奥氏体相的纳米硬度变化规律。结果表明,铁素体相和奥氏体相的纳米硬度随充氢时间的增加而增加,表现出氢致硬化的现象,充氢3 h后两相的氢致硬化效果基本达到饱和状态,其中奥氏体相的氢致硬化程度明显高于铁素体相。研究结果揭示了铁素体相和奥氏体相氢致硬化规律的差异,并论证了纳米压痕方法在微观力学氢损伤方面的研究优势。
Abstract:
In this paper, the hydrogen-induced micromechanical property evolution of ferritic-austenitic duplex stainless steel was studied by nanoindentation and in situ hydrogen-charging method. The 2205 duplex stainless steel was selected as the research object in experiments, during which the nanohardness variation of ferrite and austenite was mainly analyzed, based on the obtained nanoindentation load-displacement curves under different hydrogen-charging time. The results show that the nanohardness of ferrite and austenite increases with hydrogen-charging time, presenting the hydrogen-induced hardening performance. After 3 hours hydrogen charging, the hydrogen-induced hardening effect of the two phases reaches saturation state, and the degree of increased nanohardness of austenite is higher than that of ferrite. The results show the hydrogen-induced hardening difference of ferrite and austenite, and demonstrate the research advantages of nanoindentation method in terms of characterizing hydrogen damage in the micro-scale.

参考文献/References:

[1] 童海生, 孙彦辉, 宿彦京, 等. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[2] S'WIERCZYN'SKA A, FYDRYCH D, LANDOWSKI M, et al. Hydrogen embrittlement of X2CrNiMoCuN25-6-3 super duplex stainless steel welded joints under cathodic protection[J]. Construction and Building Materials, 2020, 238: 117697.
[3] GUAN K S, ZHANG X H, GU X D, et al. Failure of 304 stainless bellows expansion joint[J]. Engineering Failure Analysis, 2005, 12(3): 387-399.
[4] KAN W B, PAN H L. Failure analysis of a stainless steel hydrotreating reactor[J]. Engineering Failure Analysis, 2011, 18(1): 110-116.
[5] TORIBIO J, AYASO J. Hydrogen embrittlement and microdamage of 316 L steel affecting the structural integrity, durability and safety of pipelines[M]. Degradation Assessment and Failure Prevention of Pipeline Systems. Springer, Cham, 2020, 135-143.
[6] OLDEN V, THAULOW C, JOHNSEN R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials & Design, 2008, 29(10): 1934-1948.
[7] OLDEN V, SAAI A, JEMBLIE L, et al. FE simulation of hydrogen diffusion in duplex stainless steel[J]. International Journal of Hydrogen Energy, 2014, 39(2): 1156-1163.
[8] BARNOUSH A, VEHOFF H. Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation[J]. Acta Materialia, 2010, 58(16): 5274-5285.
[9] BARNOUSH A, ZAMANZADE M, VEHOFF H. Direct observation of hydrogen-enhanced plasticity in super duplex stainless steel by means of in situ electrochemical methods[J]. Scripta Materialia, 2010, 62(5): 242-245.
[10] 陶平, 叶飞, 赵晨宇, 等. 一种原位充氢实验装置: CN210136202U[P]. 2020-03-10.
[11] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3.
[12] KHERADMAND N, JOHNSEN R, OLSEN J S, et al. Effect of hydrogen on the hardness of different phases in super duplex stainless steel[J]. International Journal of Hydrogen Energy, 2016, 41(1): 704-712.
[13] BASA A, BARNOUSH A, THAULOW C. Nanomechanical testing of hydrogen effects on super duplex stainless steel[J]. Mechanical Testing and Diagnosis, 2012, 2(2): 5.
[14] SCHWARZ U D. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface[J]. Journal of Colloid and Interface Science, 2003, 261(1): 99-106.
[15] ASGARI M, BARNOUSH A, JOHNSEN R, et al. Microstructural characterization of pulsed plasma nitrided 316 L stainless steel[J]. Materials Science and Engineering: A, 2011, 529: 425-434.

备注/Memo

备注/Memo:
收稿日期: 2024-02-10。
基金项目: 国家自然科学基金青年科学基金项目(52205142); 江苏省高等学校基础科学研究面上资助项目(22KJB460012); 江苏省自然科学基金资助项目(BK20210854); 江苏省高校自然科学基金资助项目(20KJB470009)。
作者简介: 陶平(1991—), 男, 江苏泰州人, 博士, 讲师。E-mail: pingtao@cczu.edu.cn
更新日期/Last Update: 1900-01-01