[1]刘杨,张传蕾,孔彦惠,等.天然高分子基角膜修复材料力学性能研究进展[J].常州大学学报(自然科学版),2024,36(04):71-81.[doi:10.3969/j.issn.2095-0411.2024.04.009]
 LIU Yang,ZHANG Chuanlei,KONG Yanhui,et al.Research progress on mechanical properties of natural polymer based corneal repair materials[J].Journal of Changzhou University(Natural Science Edition),2024,36(04):71-81.[doi:10.3969/j.issn.2095-0411.2024.04.009]
点击复制

天然高分子基角膜修复材料力学性能研究进展()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年04期
页码:
71-81
栏目:
生物医药工程
出版日期:
2024-07-28

文章信息/Info

Title:
Research progress on mechanical properties of natural polymer based corneal repair materials
文章编号:
2095-0411(2024)04-0071-11
作者:
刘杨12张传蕾12孔彦惠12刘慧玉12任天1刘潇1丁硕秋1
(1.常州大学 医学与健康工程学院, 江苏 常州 213164; 2.常州大学 药学院, 江苏 常州 213164)
Author(s):
LIU Yang12 ZHANG Chuanlei12 KONG Yanhui12 LIU Huiyu12 REN Tian1 LIU Xiao1 DING Shuoqiu1
(1.School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; 2.School of Pharmacy, Changzhou University, Changzhou 213164, China)
关键词:
角膜修复 天然高分子材料 组织工程 人工角膜 力学性能
Keywords:
corneal repair natural polymer material tissue engineering artificial cornea mechanical properties
分类号:
R 318.08
DOI:
10.3969/j.issn.2095-0411.2024.04.009
文献标志码:
A
摘要:
由于盲人数量庞大、可供移植的捐赠角膜供不应求,人工角膜逐渐成为研究热点,但人工角膜常因力学性能不足而发生植片撕裂,为克服这一问题,国内外研究者开展了一系列研究工作尝试改善人工角膜的力学性能。文章针对胶原蛋白、明胶、丝素蛋白以及壳聚糖这4类常见的天然高分子基角膜修复材料的力学性能相关进展进行了总结。结果发现,通过光交联、热交联等物理方法,1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)/N-羟基琥珀酰亚胺(NHS)交联、京尼平或戊二醛交联等化学方法以及其他复合方法都可以显著提升角膜材料的力学性能,但这些方法仍存在一些不足之处。因此,进一步开发高质量人工角膜至关重要,文章通过归纳总结希望能够为角膜修复材料的力学性能提升研究提供一些参考和思路。
Abstract:
Due to the large number of blind individuals and the shortage of donor corneas available for transplantation, artificial corneas have gradually become a research hotspot. However, artificial corneas often experience implant tearing due to insufficient mechanical properties. In order to solve this problem, researchers at home and abroad have tried to improve the mechanical properties of corneal repair materials by a series of research work. This paper summarizes the progress relating to the mechanical properties of four common natural polymer-based corneal repair materials, namely collagen, gelatin, silk fibroin, and chitosan. The results show that physical methods such as photo-crosslinking and thermal crosslinking, chemical methods such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide(EDC)/N-hydroxysuccinimide(NHS)crosslinking, genipine or glutaraldehyde crosslinking and other composite methods can significantly improve the mechanical properties of corneal materials, but these methods still have some shortcomings. Therefore, further development of high-quality artificial corneas is crucial. It is hoped that the article can provide some reference and ideas for the study of improving the mechanical properties of corneal repair materials through summarization.

参考文献/References:

[1] LONG Y Y, ZHAO X, LIU S, et al. Collagen-hydroxypropyl methylcellulose membranes for corneal regeneration[J]. ACS Omega, 2018, 3(1): 1269-1275.
[2] LIU C, SAEED H N. Disparities in access to corneal tissue in the developing world[J]. Seminars in Ophthalmology, 2023, 38(2): 183-189.
[3] IORIO E, BARBARO V, ALVISI G, et al. New frontiers of corneal gene therapy[J]. Human Gene Therapy, 2019, 30(8): 923-945.
[4] 纪佳月, 韦柳晴, ZACHARIA A, 等. 纤维蛋白粘合剂粘贴双层基质透镜行兔板层角膜移植术[J]. 国际眼科杂志, 2022, 22(5): 775-779.
[5] WANG H Y, WEI R H, ZHAO S Z. Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds[J]. International Journal of Ophthalmology, 2013, 6(6): 873-878.
[6] KONG B, SUN L Y, LIU R, et al. Recombinant human collagen hydrogels with hierarchically ordered microstructures for corneal stroma regeneration[J]. Chemical Engineering Journal, 2022, 428: 131012.
[7] EVERAERTS F, TORRIANNI M, HENDRIKS M, et al. Biomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinks[J]. Journal of Biomedical Materials Research Part A, 2008, 85A(2): 547-555.
[8] WENG L H, GOULDSTONE A, WU Y H, et al. Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan[J]. Biomaterials, 2008, 29(14): 2153-2163.
[9] GU L S, SHAN T T, MA Y X, et al. Novel biomedical applications of crosslinked collagen[J]. Trends in Biotechnology, 2019, 37(5): 464-491.
[10] EBHODAGHE S O. Natural polymeric scaffolds for tissue engineering applications[J]. Journal of Biomaterials Science, 2021, 32(16): 2144-2194.
[11] 魏俊超, 李晓娜. 圆锥角膜生物力学研究进展[J]. 太原理工大学学报, 2022, 53(3): 443-449.
[12] LIU Y, ZHANG C L, KONG Y H, et al. Modification of collagen film via surface grafting of taurine molecular to promote corneal nerve repair and epithelization process[J]. Journal of Functional Biomaterials, 2022, 13(3): 98-103.
[13] ZEUGOLIS D I, PAUL G R, ATTENBURROW G. Cross-linking of extruded collagen fibers: a biomimetic three-dimensional scaffold for tissue engineering applications[J]. Journal of Biomedical Materials Research, 2009, 89(4): 895-908.
[14] ZHAO X, SONG W J, LIU S, et al. Corneal regeneration by utilizing collagen based materials[J]. Science China Chemistry, 2016, 59(12): 1548-1553.
[15] DELGADO L M, BAYON Y, PANDIT A, et al. To cross-link or not to cross-link associated foreign body response of collagen-based devices[J]. Tissue Engineering, 2015, 21(3): 298-313.
[16] MCDADE J K, BRENNAN-PIERCE E P, ARIGANELLO M B, et al. Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment[J]. Acta Biomaterialia, 2013, 9(7): 7191-7199.
[17] OLDE DAMINK L H H, DIJKSTRA P J, VAN LUYN M J A, et al. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide[J]. Biomaterials, 1996, 17(8): 765-773.
[18] HUANG L L, SUNG H W, TSAI C C, et al. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent[J]. Journal of Biomedical Materials Research, 1998, 42(4): 568-576.
[19] MENTINK C J A L, HENDRIKS M, LEVELS A A G, et al. Glucose-mediated cross-linking of collagen in rat tendon and skin[J]. Clinica Chimica Acta, 2002, 321(1/2): 69-76.
[20] LEI X Y, JIA Y G, SONG W J, et al. Mechanical and optical properties of reinforced collagen membranes for corneal regeneration through polyrotaxane cross-linking[J]. ACS Applied Bio Materials, 2019, 2(9): 3861-3869.
[21] ZHAO X, LIU Y, LI W C, et al. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: improving mechanical property by crosslinking with citric acid[J]. Materials Science and Engineering, 2015, 55: 201-208.
[22] KISHORE V, IYER R, FRANDSEN A, et al. In vitro characterization of electrochemically compacted collagen matrices for corneal applications[J]. Biomedical Materials(Bristol, England), 2016, 11(5): 055008.
[23] IBUSUKI S, HALBESMA G J, RANDOLPH M A, et al. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering[J]. Tissue Engineering, 2007, 13(8): 199-2001.
[24] TAKEZAWA T, OZAKI K, NITANI A, et al. Collagen vitrigel: a novel scaffold that can facilitate a three-dimensional culture for reconstructing organoids[J]. Cell Transplantation, 2004, 13(4): 463-473.
[25] MA X H, NOISHIKI Y, YAMANE Y, et al. Thermal cross-linking for biologically degradable materials[J]. ASAIO Journal, 1996, 42(5): 866-871.
[26] SUN X M, YANG X J, SONG W J, et al. Construction and evaluation of collagen-based corneal grafts using polycaprolactone to improve tension stress[J]. ACS Omega, 2020, 5(1): 674-682.
[27] GERMANN J A, MARTÍNEZ-ENRÍQUEZ E, MARTÍNEZ-GARCÍA M C, et al. Corneal collagen ordering after in vivo rose bengal and riboflavin cross-linking[J]. Investigative Ophthalmology & Visual Science, 2020, 61(3): 28-35.
[28] LEVIS H J, MENZEL-SEVERING J, DRAKE R A L, et al. Plastic compressed collagen constructs for ocular cell culture and transplantation: a new and improved technique of confined fluid loss[J]. Current Eye Research, 2013, 38(1): 41-52.
[29] QIN L F, GAO H C, XIONG S J, et al. Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair[J]. Journal of Materials Science: Materials in Medicine, 2020, 31(6): 55-62.
[30] LI W C, LONG Y Y, LIU Y, et al. Fabrication and characterization of chitosan-collagen crosslinked membranes for corneal tissue engineering[J]. Journal of Biomaterials Science, 2014, 25(17): 1962-1972.
[31] 王学川, 赵文莹, 张慧洁. 明胶的改性及其在胶黏剂中的应用研究进展[J]. 陕西科技大学学报, 2022, 40(4): 100-108, 120.
[32] 蒋媛, 张倩, 吴雨丹, 等. 基质金属蛋白酶活性在3种肺疾病中的比较[J]. 常州大学学报(自然科学版), 2017, 29(2): 47-51.
[33] CAO Z, DOU C, DONG S W. Scaffolding biomaterials for cartilage regeneration[J]. Journal of Nanomaterials, 2014, 2014: 4-9.
[34] OZCELIK B, BROWN K D, BLENCOWE A, et al. Ultrathin chitosan-poly(ethylene glycol)hydrogel films for corneal tissue engineering[J]. Acta Biomaterialia, 2013, 9(5): 6594-6605.
[35] LAI J Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye[J]. International Journal of Molecular Sciences, 2012, 13(9): 10970-10985.
[36] WANG Y J, GUO L, REN L, et al. A study on the performance of hyaluronic acid immobilized chitosan film[J]. Biomedical Materials(Bristol, England), 2009, 4(3): 035009.
[37] VALMIKINATHAN C M, MUKHATYAR V J, JAIN A, et al. Photocrosslinkable chitosan based hydrogels for neural tissue engineering[J]. Soft Matter, 2012, 8(6): 1964-1976.
[38] GOODARZI H, JADIDI K, POURMOTABED S, et al. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications[J]. International Journal of Biological Macromolecules, 2019, 126: 620-632.
[39] ROSE J B, SIDNEY L E, PATIENT J, et al. In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft[J]. Journal of Biomedical Materials Research Part A, 2019, 107(4): 828-838.
[40] DA SILVA R S G, PINTO L A A. Physical cross-linkers: alternatives to improve the mechanical properties of fish gelatin[J]. Food Engineering Reviews, 2012, 4(3): 165-170.
[41] LI L L, LU C L, WANG L, et al. Gelatin-based photocurable hydrogels for corneal wound repair[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13283-13292.
[42] ZHAO X, LI S Q, DU X Y, et al. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty[J]. Bioactive Materials, 2022, 8: 196-209.
[43] FARASATKIA A, KHARAZIHA M, ASHRAFIZADEH F, et al. Transparent silk/gelatin methacrylate(GelMA)fibrillar film for corneal regeneration[J]. Materials Science & Engineering, 2021, 120: 111744.
[44] XU W H, WANG Z Y, LIU Y, et al. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing[J]. Carbohydrate Polymers, 2018, 192: 240-250.
[45] TAO H, KAPLAN D L, OMENETTO F G. Silk materials: a road to sustainable high technology[J]. Advanced Materials, 2012, 24(21): 2824-2837.
[46] MA D K, WANG Y S, DAI W J. Silk fibroin-based biomaterials for musculoskeletal tissue engineering[J]. Materials Science & Engineering, 2018, 89: 456-469.
[47] KOH L D, YEO J, LEE Y Y, et al. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing[J]. Materials Science & Engineering, 2018, 86: 151-172.
[48] APPLEGATE M B, PARTLOW B P, COBURN J, et al. Photocrosslinking of silk fibroin using riboflavin for ocular prostheses[J]. Advanced Materials, 2016, 28(12): 2417-2420.
[49] WANG S R, GHEZZI C E, GOMES R, et al. In vitro 3D corneal tissue model with epithelium, stroma, and innervation[J]. Biomaterials, 2017, 112: 1-9.
[50] BRAY L J, GEORGE K A, AINSCOUGH S L, et al. Human corneal epithelial equivalents constructed on bombyx mori silk fibroin membranes[J]. Biomaterials, 2011, 32(22): 5086-5091.
[51] 王嘉琪, 张文芳. 角膜组织工程研究的丝素蛋白/壳聚糖支架: 理论进展与应用转化[J]. 中国组织工程研究, 2018, 22(6): 952-957.
[52] BHATTACHARJEE P, FERNÁNDEZ-PÉREZ J, AHEARNE M. Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering[J]. Materials Science & Engineering, 2019, 105: 110093.
[53] SHEIK S, SHEIK S, NAIRY R, et al. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2018, 116: 45-53.
[54] LI Y J, YANG Y L, YANG L, et al. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model[J]. Stem Cell Research & Therapy, 2017, 8(1): 256-262.
[55] BAI S M, HAN H Y, HUANG X W, et al. Silk scaffolds with tunable mechanical capability for cell differentiation[J]. Acta Biomaterialia, 2015, 20: 22-31.
[56] MU X, WANG Y, GUO C C, et al. 3D printing of silk protein structures by aqueous solvent-directed molecular assembly[J]. Macromolecular Bioscience, 2020, 20(1): 1900191.
[57] HUANG J W, QIN J Z, ZHANG P, et al. Facile preparation of a strong chitosan-silk biocomposite film[J]. Carbohydrate Polymers, 2020, 229: 115515.
[58] CHANDY T, SHARMA C P. Chitosan as a biomaterial[J]. Biomaterials, Artificial Cells and Artificial Organs, 1990, 18(1): 1-24.
[59] 郭静, 高文君, 朱小梅, 等. C-端设计定点突变提高Streptomyces Avermitilis壳聚糖酶稳定性及催化活性[J]. 常州大学学报(自然科学版), 2022, 34(5): 82-92.
[60] KUMAR M N V R, MUZZARELLI R A A, MUZZARELLI C, et al. Chitosan chemistry and pharmaceutical perspectives[J]. ChemInform, 2005, 36(11): 6017-6084.
[61] MARTINS A F, FACCHI S P, FOLLMANN H D M, et al. Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: review[J]. International Journal of Molecular Sciences, 2014, 15(11): 20800-20832.
[62] WAHBA M I. Enhancement of the mechanical properties of chitosan[J]. Journal of Biomaterials Science, 2020, 31(3): 350-375.
[63] ORYAN A, KAMALI A, MOSHIRI A, et al. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds[J]. International Journal of Biological Macromolecules, 2018, 107: 678-688.
[64] 郑化, 杜予民, 余家会, 等. 交联壳聚糖膜的制备及其性能的研究[J]. 高等学校化学学报, 2000, 21(5): 809-812.
[65] OH D X, HWANG D S. A biomimetic chitosan composite with improved mechanical properties in wet conditions[J]. Biotechnology Progress, 2013, 29(2): 505-512.
[66] PITA-LÓPEZ M L, FLETES-VARGAS G, ESPINOSA-ANDREWS H, et al. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review[J]. European Polymer Journal, 2021, 145: 110176.
[67] LEE Y M, KIM S S, KIM S H. Synthesis and properties of poly(ethylene glycol)macromer/β-chitosan hydrogels[J]. Journal of Materials Science: Materials in Medicine, 1997, 8(9): 537-541.
[68] LIU C L, FU L H, JIANG T, et al. High-strength and self-healable poly(acrylic acid)/chitosan hydrogel with organic-inorganic hydrogen bonding networks[J]. Polymer, 2021, 230: 124006.
[69] BETTINI R, ROMANI A A, MORGANTI M M, et al. Physicochemical and cell adhesion properties of chitosan films prepared from sugar and phosphate-containing solutions[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68(1): 74-81.
[70] TAYEBI T, BARADARAN-RAFII A, HAJIFATHALI A, et al. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering[J]. Scientific Reports, 2021, 11(1): 7060-7067.
[71] 吴丹, 黎玥, 吴复跃, 等. 改良处理低温甘油保存的羊膜对兔角膜碱化学伤后上皮修复作用的研究[J]. 中国眼耳鼻喉科杂志, 2021, 21(6): 439-444.
[72] DONG Q W, WU D K, LI M Q, et al. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: a review[J]. Tissue & Cell, 2022, 76: 101782.
[73] KHARAGHANI D, DUTTA D, HO K K K, et al. Active loading graphite/hydroxyapatite into the stable hydroxyethyl cellulose scaffold nanofibers for artificial cornea application[J]. Cellulose, 2020, 27(6): 3319-3334.
[74] WANG J H, ZHANG Y S, WAN Y Z. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial[J]. Materials Science and Engineering C, 2010, 30(1): 214-218.
[75] TONSOMBOON K, OYEN M L. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21: 185-194.

备注/Memo

备注/Memo:
收稿日期: 2024-04-16。
基金项目: 国家自然科学基金资助项目(81900814); 江苏省科技厅自然科学基金面上资助项目(BK20171196); 浙江省重点研发计划资助项目(2020C03003)。
作者简介: 刘杨(1985—), 男, 湖北仙桃人, 博士, 副研究员。 E-mail: liuyang@cczu.edu.cn
更新日期/Last Update: 1900-01-01