[1]何大方,陆俊泓,朱 晔,等.中空球形MoS2/C复合材料的构筑及储锂性能[J].常州大学学报(自然科学版),2024,36(05):1-9.[doi:10.3969/j.issn.2095-0411.2024.05.001]
 HE Dafang,LU Junhong,ZHU Ye,et al.Preparation and lithium-storage properties of hollow sphere MoS2/C nanocomposites[J].Journal of Changzhou University(Natural Science Edition),2024,36(05):1-9.[doi:10.3969/j.issn.2095-0411.2024.05.001]
点击复制

中空球形MoS2/C复合材料的构筑及储锂性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年05期
页码:
1-9
栏目:
材料科学与工程:能源存储与转化
出版日期:
2024-09-28

文章信息/Info

Title:
Preparation and lithium-storage properties of hollow sphere MoS2/C nanocomposites
文章编号:
2095-0411(2024)05-0001-09
作者:
何大方 陆俊泓 朱 晔 黄 洁 王 顺
常州大学 石油化工学院, 江苏 常州 213164
Author(s):
HE Dafang LU Junhong ZHU Ye HUANG Jie WANG Shun
School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
关键词:
锂离子电池 负极材料 二硫化钼
Keywords:
lithium-ion battery anode MoS2 carbon
分类号:
TB 332
DOI:
10.3969/j.issn.2095-0411.2024.05.001
文献标志码:
A
摘要:
二硫化钼(MoS2)是典型的层状过渡金属硫化物,作为锂离子电池负极材料具有巨大的应用前景。文章采用热分解的方法合成了中空球形的纳米MoS2,然后以盐酸多巴胺为碳源,制备了表面包覆碳层的中空MoS2负极材料。采用XRD,Raman,SEM等方法系统表征了MoS2/C复合材料的晶型结构和形貌,MoS2/C负极材料的尺寸在150~250 nm,表面碳层厚度为40~70 nm,中空球形结构的纳米MoS2可以有效地缓解充放电过程中的剧烈体积效应,表面碳层包覆可以有效改善MoS2的导电性,同时增强了材料的结构稳定性。电化学测试表明,MoS2/C负极材料初始放电比容量高达1 132.1 mA·h/g,经过50次循环后,放电比容量仍有587.4 mA·h/g,显示出了在锂离子电池负极材料领域的巨大应用潜力。
Abstract:
Molybdenum disulfide(MoS2)is a classical layered transition metal sulfide, which exhibits excellent performance as cathode materials for lithium-ion batteries. In this research, hollow spherical nano-MoS2 was synthesized by thermal decomposition, and then the carbon coated MoS2 was prepared with dopamine hydrochloride as carbon source. Various characterization techniques such as XRD,SEM, and Raman spectroscopy were used to analyze the composition and structure of MoS2/C nanocomposites. The size of MoS2/C nanocomposites is 150—250 nm and the thickness of carbon layer is 40—70 nm. The hollow spherical structure of nano MoS2 can effectively alleviate the intense volume change during cycling. The coating of carbon layer on the surface can effectively improve the conductivity of MoS2, and enhance the structural stability. As a result, this novel ordered structure delivers a high initial specific capacity of 1 132.1 mA·h/g and remain 587.4 mA·h/g over 50 cycles, thus exhibiting great potential as an anode composite structure for durable high-rate lithium-ion batteries.

参考文献/References:

[1] WU M H, XIA S S, DING J F, et al. Growth of MoS2 nanoflowers with expanded interlayer distance onto N-doped graphene for reversible lithium storage[J]. ChemElectroChem, 2018, 5(16): 2263-2270.
[2] CHANG K, CHEN W X, MA L, et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(17): 6251-6257.
[3] LUO H, ZHANG L Z, YUE L. Synthesis of MoS2/C submicrosphere by PVP-assisted hydrothermal method for lithium-ion battery[J]. Advanced Materials Research, 2012, 531: 471-477.
[4] LIANG S Q, ZHOU J, LIU J, et al. PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties[J]. CrystEngComm, 2013, 15(25): 4998-5002.
[5] CHEN Y, SONG B H, TANG X S, et al. Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium-ion batteries[J]. Small, 2014, 10(8): 1536-1543.
[6] ZHANG C F, WU H B, GUO Z P, et al. Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties[J]. Electrochemistry Communications, 2012, 20: 7-10.
[7] WANG G X, BEWLAY S, YAO J, et al. Tungsten disulfide nanotubes for lithium storage[J]. Electrochemical and Solid-State Letters, 2004, 7(10): A321.
[8] XIAO J, WANG X J, YANG X Q, et al. Electrochemically induced high-capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium[J]. Advanced Functional Materials, 2011, 21(15): 2840-2846.
[9] WENELSKA K, ADAM V, THAUER E, et al. Fabrication of 3D graphene/MoS2 spherical heterostructure as anode material in lithium-ion battery[J]. Frontiers in Energy Research, 2022, 10: 960786.
[10] DAVID L, BHANDAVAT R, SINGH G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770.
[11] HU Z, LIU Q N, SUN W Y, et al. MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries[J]. Inorganic Chemistry Frontiers, 2016, 3(4): 532-535.
[12] KOROTEEV V O, STOLYAROVA S G, KOTSUN A A, et al. Nanoscale coupling of MoS2 and graphene via rapid thermal decomposition of ammonium tetrathiomolybdate and graphite oxide for boosting capacity of Li-ion batteries[J]. Carbon, 2021, 173: 194-204.
[13] LI Z Y, LIU S Y, VINAYAN B P, et al. Hetero-layered MoS2/C composites enabling ultrafast and durable Na storage[J]. Energy Storage Materials, 2019, 21: 115-123.
[14] LI Z Y, OTTMANN A, SUN Q, et al. Hierarchical MoS2-carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage[J]. Journal of Materials Chemistry A, 2019, 7(13): 7553-7564.
[15] LIU X G, TAN J, LI X, et al. Glucose-assisted one-pot hydrothermal synthesis of hierarchical-structured MoS2/C quasi-hollow microspheres for high-performance lithium-ion battery[J]. Polymers, 2021, 13(5): 837.
[16] LI Z Y, OTTMANN A, ZHANG T, et al. Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(8): 3987-3994.
[17] LEE G H, KIM S J, KIM M C, et al. In situ formation of MoS2/C nanocomposite as an anode for high-performance lithium-ion batteries[J]. RSC Advances, 2016, 6(95): 92259-92266.

相似文献/References:

[1]周 慧,王 进,许 娟,等.LiFePO4/石墨烯复合材料的电化学性能比较[J].常州大学学报(自然科学版),2013,(01):76.[doi:10.3969/j.issn.2095-0411.2013.01.016]
 ZHOU Hui,WANG Jin,XU Juan,et al.Comparative Study of Electrochemical Performance of LiFePO4/Graphene Composites[J].Journal of Changzhou University(Natural Science Edition),2013,(05):76.[doi:10.3969/j.issn.2095-0411.2013.01.016]
[2]王 进,展亮亮,许 娟,等.锂离子电池负极材料SnO2-Gn-C三元复合物的制备及其电化学性能[J].常州大学学报(自然科学版),2013,(04):74.[doi:10.3969/j.issn.2095-0411.2013.04.016]
 WANG Jin,ZHAN Liang liang,XU Juan,et al.Preparation of SnO2-Gn-C Ternary Composite and its Electrochemical Performance as Anode Material of Lithium Ion Batteries[J].Journal of Changzhou University(Natural Science Edition),2013,(05):74.[doi:10.3969/j.issn.2095-0411.2013.04.016]
[3]任玉荣,王佳伟,丁建宁.负极材料NiO/rGO/PPy的制备及储锂性能[J].常州大学学报(自然科学版),2015,(03):18.[doi:10.3969/j.issn.2095-0411.2015.03.004]
 REN Yurong,WANG Jiawei,DING Jianning.The Synthesis and Lithium Storage Performance of NiO/rGO/PPy Anode Materials[J].Journal of Changzhou University(Natural Science Edition),2015,(05):18.[doi:10.3969/j.issn.2095-0411.2015.03.004]
[4]刘娟.工业CT在锂离子电池失效分析检测中的应用[J].常州大学学报(自然科学版),2021,33(01):15.[doi:10.3969/j.issn.2095-0411.2021.01.003]
 LIU Juan.Application of Industrical Computed Tomography on the Failure Analysis of Lithium Ion Batteries[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):15.[doi:10.3969/j.issn.2095-0411.2021.01.003]
[5]李建斌,陈金媛,任玉荣,等.喷雾干燥法制备线球状SiO/CNTs复合负极材料[J].常州大学学报(自然科学版),2022,34(03):26.[doi:10.3969/j.issn.2095-0411.2022.03.005]
 LI Jianbin,CHEN Jinyuan,REN Yurong,et al.Fabrication of Yarn-Ball Structured SiO/CNTs Anode by Spray Drying Method[J].Journal of Changzhou University(Natural Science Edition),2022,34(05):26.[doi:10.3969/j.issn.2095-0411.2022.03.005]

备注/Memo

备注/Memo:
收稿日期: 2024-03-20。
基金项目: 常州大学科研启动基金资助项目(ZMF20020438)。
作者简介: 何大方(1987—), 男, 江苏徐州人, 博士, 副教授。 E-mail: dafanghe@cczu.edu.cn
更新日期/Last Update: 1900-01-01