[1]唐 波,张国良.Cu-BTC和石墨烯改性的高性能染料敏化太阳能电池[J].常州大学学报(自然科学版),2024,36(05):10-17.[doi:10.3969/j.issn.2095-0411.2024.05.002]
 TANG Bo,ZHANG Guoliang.Cu-BTC and graphene co-modified dye sensitize solar cells with high performances[J].Journal of Changzhou University(Natural Science Edition),2024,36(05):10-17.[doi:10.3969/j.issn.2095-0411.2024.05.002]
点击复制

Cu-BTC和石墨烯改性的高性能染料敏化太阳能电池()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年05期
页码:
10-17
栏目:
材料科学与工程:能源存储与转化
出版日期:
2024-09-28

文章信息/Info

Title:
Cu-BTC and graphene co-modified dye sensitize solar cells with high performances
文章编号:
2095-0411(2024)05-0010-08
作者:
唐 波 张国良
(常州大学 石油与天然气工程学院, 江苏 常州 213164
Author(s):
TANG Bo ZHANG Guoliang
(School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
关键词:
Cu-BTC 三维网状石墨烯 染料敏化太阳能电池 光阳极
Keywords:
Cu-BTC three-dimensional graphene networks dye sensitize solar cells photoanode
分类号:
TM 914
DOI:
10.3969/j.issn.2095-0411.2024.05.002
文献标志码:
A
摘要:
采用Cu-BTC和三维网状石墨烯(3DGNs)对光阳极材料进行改性,通过提高光阳极的比表面积以及提供光生电子的快速输运通道,器件的短路电流和光电转换效率实现了显著的提高。采用SEM和XRD对复合光阳极的微结构进行分析,通过电流-电压曲线和入射光电流转化效率分析其光伏特性。通过调整光阳极中Cu-BTC,3DGNs和TiO2的质量分数实现各种组分的协同作用。优化后,器件的短路电流为(20.5±0.1)mA/cm2,开路电压为(680±2)mV,填充因子为(61.9±0.1)%,能量转换效率为(8.63±0.1)%。
Abstract:
Cu-BTC and three-dimensional graphene networks(3DGNs)were employed to modify the photoanode of dye sensitize solar cells(DSSCs), and the remarkably enhanced short circuit current and incident photon to current conversion efficiency have been achieved. The major reasons are the increased BET area of the resulting photoanode and the formed fast transport channel for the photoinduced electrons. The morphology of photoanode was analyzed by SEM and XRD, and the photocatalytic performances were detected by current-voltage curves and incident photon to current conversion efficiency and the synergy between the Cu-BTC, 3DGNs, and TiO2 can be achieved by adjusting the mass fraction. Moreover, the scattering ability of the photoanode to incident light also can be controlled by modulating the size of Cu-BTC. After optimizing the photoanode, the short circuit current, open circuit voltaic, fill factor and energy conversion efficiency of the as-prepared device reached(20.5±0.1)mA/cm2,(680±2)mV,(61.9±0.1)%,(8.63±0.1)%.

参考文献/References:

[1] O'REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
[2] TANG B, WANG S L, ZHANG J, et al. Three-dimensional graphene monolith-based composite: superiority in properties and applications[J]. International Materials Reviews, 2018, 63(3): 204-225.
[3] SINGH A K, NITHYANANDHAN J. Amphiphilic indoline-based unsymmetrical squaraine dyes for dye-sensitized solar cells: modulating the dye-TiO2/electrolyte interface for nonaqueous and aqueous electrolytes[J]. ACS Applied Energy Materials, 2021, 4(12): 13932-13942.
[4] PEIRIS D S U, EKANAYAKE P, PETRA M I. Stacked rGO-TiO2 photoanode via electrophoretic deposition for highly efficient dye-sensitized solar cells[J]. Organic Electronics, 2018, 59: 399-405.
[5] CUONG D L T, VAN CUONG L, NGHIA L T T, et al. Synthesis of titanium dioxide/reduced graphene oxide nanocomposite by ultrasound-assisted mechanical mixing method for fabricating photoanode to upgrade the performance and stability of dye-sensitized solar cell[J]. Materials Research Bulletin, 2022, 156: 112000.
[6] KUMAR K A, SUBALAKSHMI K, SENTHILSELVAN J. Effect of co-sensitization in solar exfoliated TiO2 functionalized rGO photoanode for dye-sensitized solar cell applications[J]. Materials Science in Semiconductor Processing, 2019, 96: 104-115.
[7] WEN J Y, SUN Z C, QIAO Y, et al. Ti3C2 MXene-reduced graphene oxide composite polymer-based printable electrolyte for quasi-solid-state dye-sensitized solar cells[J]. ACS Applied Energy Materials, 2022, 5(3): 3329-3338.
[8] HE Y F, ZHANG Z Y, WANG W Y, et al. Metal organic frameworks derived high-performance photoanodes for DSSCs[J]. Journal of Alloys and Compounds, 2020, 825: 154089.
[9] MOLOTO W, MBULE P, NXUMALO E, et al. Stabilizing effects of zinc(II)-benzene-1, 3, 5-tricarboxylate metal organic frameworks on the performance of TiO2 photoanodes for use in dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407: 113063.
[10] GUIMARAES R R, PARUSSULO A L A, MATIAS T A, et al. Electrostatic blocking barrier as an effective strategy to inhibit electron recombination in DSSCs[J]. Electrochimica Acta, 2017, 255: 92-98.
[11] GOMATHI M, SANKAR A, KANNAN S, et al. Tin selenide/carbon black nanocomposite-based high efficiency counter electrode for dye-sensitized solar cells(DSSCs)[J]. Chemical Physics Letters, 2022, 802: 139802.
[12] TANG B, YU H G, HUANG W Q, et al. Three-dimensional graphene networks and RGO-based counter electrode for DSSCs[J]. RSC Advances, 2019, 9(28): 15678-15685.
[13] 闫朔, 黄俊尧, 饶永超, 等. 氧化石墨烯与SDS复配对水合物生成特性影响[J]. 常州大学学报(自然科学版), 2020, 32(2): 68-73.
[14] TANG B, HE Y F, ZHANG Z Y, et al. Influence of N doping and the functional groups of graphene on a RGO/TiO2 composite photocatalyst[J]. Science China Technological Sciences, 2020, 63(6): 1045-1054.
[15] 董良飞, 蒋庭宇, 周美成, 等. 蜂窝型凹凸棒石黏土吸附气相甲醛研究[J]. 常州大学学报(自然科学版), 2021, 33(2): 1-7.
[16] ZHAO H H, ZHAO N, MATUS E V, et al. Preparation and modulation of Cu-BTC-(n)Br/MCFs with water stability and its application for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107564.
[17] ABBASI A R, KARIMI M, DAASBJERG K. Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method[J]. Ultrasonics Sonochemistry, 2017, 37: 182-191.
[18] AKBARI A, KARIMI-SABET J, GHOREISHI S M. Intensification of helium separation from CH4 and N2 by size-reduced Cu-BTC particles in Matrimid matrix[J]. Separation and Purification Technology, 2020, 251: 117317.

备注/Memo

备注/Memo:
收稿日期: 2024-06-22。
基金项目: 国家自然科学基金资助项目(51506012); 江苏省青蓝工程资助项目(SCZ1908200013)。
作者简介: 唐波(1983—), 男, 江西南昌人, 博士, 副教授。 E-mail: tangbo@cczu.edu.cn
更新日期/Last Update: 1900-01-01