参考文献/References:
[1] ZHENG Y F, GU X N, WITTE F. Biodegradable metals[J]. Materials Science and Engineering R: Reports, 2014, 77: 1-34.
[2] BIESIEKIERSKI A, WANG J, GEPREEL M A, et al. A new look at biomedical Ti-based shape memory alloys[J]. Acta Biomaterialia, 2012, 8(5): 1661-1669.
[3] CHEN Q Z, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering R: Reports, 2015, 87: 1-57.
[4] KABIR H, MUNIR K, WEN C E, et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives[J]. Bioactive Materials, 2021, 6(3): 836-879.
[5] 郑玉峰, 刘嘉宁. 从可降解金属的角度审视医用镁合金的元素选择[J]. 中国材料进展, 2020, 39(2): 92-99, 112.
[6] 袁广银, 张佳, 丁文江. 可降解医用镁基生物材料的研究进展[J]. 中国材料进展, 2011, 30(2): 44-50.
[7] WINDHAGEN H, RADTKE K, WEIZBAUER A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomedical Engineering Online, 2013, 12: 62.
[8] LEE J W, HAN H S, HAN K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3): 716-721.
[9] LIN W J, QIN L, QI H P, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomaterialia, 2017, 54: 454-468.
[10] MEYERS M, MISHRA A, BENSON D. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51: 427-556.
[11] NYIRENDA K.累积叠轧7075/1100铝合金多层复合板材力学性能研究[D]. 重庆: 重庆大学, 2013.
[12] YOUSSEF K M S, KOCH C C, FEDKIW P S. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition[J]. Corrosion Science, 2004, 46(1): 51-64.
[13] LI M C, JIANG L L, ZHANG W Q, et al. Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5% NaCl solutions[J]. Journal of Solid State Electrochemistry, 2007, 11(9): 1319-1325.
[14] FARGE J C T, WILLIAMS W M. The recrystallization behaviour of zinc alloys containing magnesium, cadmium, copper, silver, lead and iron[J]. Canadian Metallurgical Quarterly, 1966, 5(4): 265-272.
[15] MICHALIK R. An influence of the self-ageing on the hardness and corrosion resistance of the ZnAl22Cu3 and ZnAl40Cu3 alloys[J]. Solid State Phenomena, 2016, 246: 95-98.
[16] KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity?[J]. Biomaterials, 2006, 27(15): 2907-2915.
[17] ASTM Standards. Standard practice for laboratory immersion corrosion testing of metals: G31-72[S]. West Conshohocken, PA: ASTM International, 2018.
[18] GUO P, BAGHERI R, YANG L J, et al. Effects of stannum(Sn)addition on corrosion behavior and biocompatibility in vitro of biodegradable Zn-Sn alloys[J]. Materials and Corrosion, 2021, 73: 231-241.
[19] GUO P S, LI F X, YANG L J, et al. Ultra-fine-grained Zn-0.5Mn alloy processed by multi-pass hot extrusion: grain refinement mechanism and room-temperature superplasticity[J]. Materials Science and Engineering: A, 2019, 748: 262-266.
[20] GUO P S, ZHU X L, YANG L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: grain refinement mechanism, corrosion behavior, and biocompatibility in vivo[J]. Materials Science & Engineering C, Materials for Biological Applications, 2021, 118: 111391.
[21] BERGSTRÖM Y, HALLÉN H. Hall-Petch relationships of iron and steel[J]. Metal Science, 1983, 17(7): 341-347.
[22] ARMSTRONG R, CODD I, DOUTHWAITE R M, et al. The plastic deformation of polycrystalline aggregates[J]. Philosophical Magazine, 1962, 7(73): 45-58.
[23] ARMSTRONG R W. The influence of polycrystal grain size on several mechanical properties of materials[J]. Metallurgical Transactions, 1970, 1(5): 1169-1176.
[24] DING F, ZHU X L, GUO P S, et al. Softening and structural instability mechanism of biodegradable Zn-0.45Mn alloy at different heat treatment temperatures[J]. Materials Today Communications, 2022, 33: 104768.
[25] SHEN T D, KOCH C C, TSUI T Y, et al. On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying[J]. Journal of Materials Research, 1995, 10(11): 2892-2896.
[26] KLUGE M D, WOLF D, LUTSKO J F, et al. Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation[J]. Journal of Applied Physics, 1990, 67(5): 2370-2379.
[27] 章小鸽. 锌的腐蚀与电化学[M]. 仲海峰, 程东妹, 译. 北京: 冶金工业出版社, 2008.
[28] 宋余九. 金属的晶界与强度[M]. 西安: 西安交通大学出版社, 1987.
[29] CHEN Y Q, ZHANG W T, MAITZ M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[J]. Corrosion Science, 2016, 111: 541-555.
[30] OSÓRIO W R, FREIRE C M, GARCIA A. The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings[J]. Materials Science and Engineering: A, 2005, 402(1/2): 22-32.
[31] SALGUEIRO AZEVEDO M, ALLÉLY C, OGLE K, et al. Corrosion mechanisms of Zn(Mg, Al)coated steel in accelerated tests and natural exposure: 1. the role of electrolyte composition in the nature of corrosion products and relative corrosion rate[J]. Corrosion Science, 2015, 90: 472-481.