[1]郭浦山,王宇伟,刘雅玄,等.灭菌温度对超细晶Zn-0.3Mn合金力学和腐蚀性能的影响[J].常州大学学报(自然科学版),2024,36(05):30-39,51.[doi:10.3969/j.issn.2095-0411.2024.05.004]
 GUO Pushan,WANG Yuwei,LIU Yaxuan,et al.Effect of sterilization temperatures on the mechanical and corrosion properties of ultrafine-grained Zn-0.3Mn alloy[J].Journal of Changzhou University(Natural Science Edition),2024,36(05):30-39,51.[doi:10.3969/j.issn.2095-0411.2024.05.004]
点击复制

灭菌温度对超细晶Zn-0.3Mn合金力学和腐蚀性能的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年05期
页码:
30-39,51
栏目:
机械与动力工程
出版日期:
2024-09-28

文章信息/Info

Title:
Effect of sterilization temperatures on the mechanical and corrosion properties of ultrafine-grained Zn-0.3Mn alloy
文章编号:
2095-0411(2024)05-0030-10
作者:
郭浦山1 王宇伟1 刘雅玄1 丁 锋1 张竞丹1 杨丽景2 张 屹1
1.常州大学 机械与轨道交通学院, 江苏 常州213164; 2.中国科学院 宁波材料技术与工程研究所, 浙江 宁波315201
Author(s):
GUO Pushan1 WANG Yuwei1 LIU Yaxuan1 DING Feng1 ZHANG Jingdan1 YANG Lijing2 ZHANG Yi1
1.School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; 2.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
关键词:
超细晶Zn-0.3Mn合金 灭菌温度 力学性能 腐蚀性能
Keywords:
ultrafine-grained Zn-0.3Mn alloy sterilization temperature mechanical properties corrosion properties
分类号:
TG 1
DOI:
10.3969/j.issn.2095-0411.2024.05.004
文献标志码:
A
摘要:
通过大塑性变形(铸造-热挤压-多道次旋锻)制备了面向医用骨科植入应用领域的可降解超细晶(UFG)Zn-0.3Mn合金(Original),进而研究了其在低温灭菌(t55)、蒸汽灭菌(t120)和干热灭菌(t180)温度状态下微观组织、力学性能、腐蚀性能的变化。研究发现:随着灭菌温度的提高,合金再结晶程度逐步加剧,主相晶粒尺寸和MnZn13相颗粒尺寸均有所增加; 力学性能方面,合金的纳米硬度和弹性模量会随着灭菌温度升高而逐渐提高; 腐蚀性能方面,归因于晶界密度和MnZn13相比例降低,减少了腐蚀起始点,合金腐蚀速率逐步下降。因而,灭菌温度会对可降解超细晶Zn-0.3Mn合金微观组织、力学性能和腐蚀性能产生足够大的影响,对于锌基植入器械的灭菌方法要尽量避免升温过程。
Abstract:
In this study, a biodegradable ultrafine-grained(UFG)Zn-0.3Mn alloy(Original)for medical orthopedic implant applications was prepared by severe plastic deformation(casting-hot extrusion-multipass rotary forging). The changes in the microstructure, mechanical properties, and corrosion properties of this alloy under the conditions of low-temperature sterilization(t55), steam sterilization(t120), and dry heat sterilization(t180)were also investigated. Results show that the degree of alloy recrystallization gradually intensifies at the microstructure level as the sterilization temperature increases. At the same time, the grain size of the main phase and the particle size of the MnZn13 phase enlarge. In terms of mechanical properties, the nano hardness and elastic modulus of the alloy will gradually increase with the increase of sterilization temperature. The corrosion performance is attributed to the decreases in grain boundary density and MnZn13 phase ratio. These decreases reduce the corrosion initiation point and gradually lower the corrosion rate of the alloy. Accordingly, the sterilization temperature will sufficiently affect the microstructure, mechanical properties, and corrosion behavior of the biodegradable UFG Zn-0.3Mn alloy. Therefore, the heating process should be avoided in the sterilization method of Zn-based implant devices.

参考文献/References:

[1] ZHENG Y F, GU X N, WITTE F. Biodegradable metals[J]. Materials Science and Engineering R: Reports, 2014, 77: 1-34.
[2] BIESIEKIERSKI A, WANG J, GEPREEL M A, et al. A new look at biomedical Ti-based shape memory alloys[J]. Acta Biomaterialia, 2012, 8(5): 1661-1669.
[3] CHEN Q Z, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering R: Reports, 2015, 87: 1-57.
[4] KABIR H, MUNIR K, WEN C E, et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives[J]. Bioactive Materials, 2021, 6(3): 836-879.
[5] 郑玉峰, 刘嘉宁. 从可降解金属的角度审视医用镁合金的元素选择[J]. 中国材料进展, 2020, 39(2): 92-99, 112.
[6] 袁广银, 张佳, 丁文江. 可降解医用镁基生物材料的研究进展[J]. 中国材料进展, 2011, 30(2): 44-50.
[7] WINDHAGEN H, RADTKE K, WEIZBAUER A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomedical Engineering Online, 2013, 12: 62.
[8] LEE J W, HAN H S, HAN K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3): 716-721.
[9] LIN W J, QIN L, QI H P, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomaterialia, 2017, 54: 454-468.
[10] MEYERS M, MISHRA A, BENSON D. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51: 427-556.
[11] NYIRENDA K.累积叠轧7075/1100铝合金多层复合板材力学性能研究[D]. 重庆: 重庆大学, 2013.
[12] YOUSSEF K M S, KOCH C C, FEDKIW P S. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition[J]. Corrosion Science, 2004, 46(1): 51-64.
[13] LI M C, JIANG L L, ZHANG W Q, et al. Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5% NaCl solutions[J]. Journal of Solid State Electrochemistry, 2007, 11(9): 1319-1325.
[14] FARGE J C T, WILLIAMS W M. The recrystallization behaviour of zinc alloys containing magnesium, cadmium, copper, silver, lead and iron[J]. Canadian Metallurgical Quarterly, 1966, 5(4): 265-272.
[15] MICHALIK R. An influence of the self-ageing on the hardness and corrosion resistance of the ZnAl22Cu3 and ZnAl40Cu3 alloys[J]. Solid State Phenomena, 2016, 246: 95-98.
[16] KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity?[J]. Biomaterials, 2006, 27(15): 2907-2915.
[17] ASTM Standards. Standard practice for laboratory immersion corrosion testing of metals: G31-72[S]. West Conshohocken, PA: ASTM International, 2018.
[18] GUO P, BAGHERI R, YANG L J, et al. Effects of stannum(Sn)addition on corrosion behavior and biocompatibility in vitro of biodegradable Zn-Sn alloys[J]. Materials and Corrosion, 2021, 73: 231-241.
[19] GUO P S, LI F X, YANG L J, et al. Ultra-fine-grained Zn-0.5Mn alloy processed by multi-pass hot extrusion: grain refinement mechanism and room-temperature superplasticity[J]. Materials Science and Engineering: A, 2019, 748: 262-266.
[20] GUO P S, ZHU X L, YANG L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: grain refinement mechanism, corrosion behavior, and biocompatibility in vivo[J]. Materials Science & Engineering C, Materials for Biological Applications, 2021, 118: 111391.
[21] BERGSTRÖM Y, HALLÉN H. Hall-Petch relationships of iron and steel[J]. Metal Science, 1983, 17(7): 341-347.
[22] ARMSTRONG R, CODD I, DOUTHWAITE R M, et al. The plastic deformation of polycrystalline aggregates[J]. Philosophical Magazine, 1962, 7(73): 45-58.
[23] ARMSTRONG R W. The influence of polycrystal grain size on several mechanical properties of materials[J]. Metallurgical Transactions, 1970, 1(5): 1169-1176.
[24] DING F, ZHU X L, GUO P S, et al. Softening and structural instability mechanism of biodegradable Zn-0.45Mn alloy at different heat treatment temperatures[J]. Materials Today Communications, 2022, 33: 104768.
[25] SHEN T D, KOCH C C, TSUI T Y, et al. On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying[J]. Journal of Materials Research, 1995, 10(11): 2892-2896.
[26] KLUGE M D, WOLF D, LUTSKO J F, et al. Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation[J]. Journal of Applied Physics, 1990, 67(5): 2370-2379.
[27] 章小鸽. 锌的腐蚀与电化学[M]. 仲海峰, 程东妹, 译. 北京: 冶金工业出版社, 2008.
[28] 宋余九. 金属的晶界与强度[M]. 西安: 西安交通大学出版社, 1987.
[29] CHEN Y Q, ZHANG W T, MAITZ M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[J]. Corrosion Science, 2016, 111: 541-555.
[30] OSÓRIO W R, FREIRE C M, GARCIA A. The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings[J]. Materials Science and Engineering: A, 2005, 402(1/2): 22-32.
[31] SALGUEIRO AZEVEDO M, ALLÉLY C, OGLE K, et al. Corrosion mechanisms of Zn(Mg, Al)coated steel in accelerated tests and natural exposure: 1. the role of electrolyte composition in the nature of corrosion products and relative corrosion rate[J]. Corrosion Science, 2015, 90: 472-481.

备注/Memo

备注/Memo:
收稿日期: 2024-04-13。
基金项目: 江苏省高等学校自然科学研究面上资助项目(22KJB430015); 江苏省自然科学基金资助项目(BK20231339); 常州市“龙城英才计划”第四批市领军型创新人才引进培育项目(CQ20230095)。
作者简介: 郭浦山(1990—), 男, 山东滨州人, 博士, 讲师。 E-mail: guopushan@cczu.edu.cn
更新日期/Last Update: 1900-01-01