[1]李倩倩,陆 怡,常爱莲,等.基于能量交换的在轨加注旋涡泵水力特性研究[J].常州大学学报(自然科学版),2024,36(05):40-51.[doi:10.3969/j.issn.2095-0411.2024.05.005]
 LI Qianqian,LU Yi,CHANG Ailian,et al.Investigation on hydraulic characteristics of the regenerative flow pump in on-orbit filling based on energy exchange[J].Journal of Changzhou University(Natural Science Edition),2024,36(05):40-51.[doi:10.3969/j.issn.2095-0411.2024.05.005]
点击复制

基于能量交换的在轨加注旋涡泵水力特性研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年05期
页码:
40-51
栏目:
机械与动力工程
出版日期:
2024-09-28

文章信息/Info

Title:
Investigation on hydraulic characteristics of the regenerative flow pump in on-orbit filling based on energy exchange
文章编号:
2095-0411(2024)05-0040-12
作者:
李倩倩12 陆 怡1 常爱莲12倪祖国3 郭春林3
1.常州大学 机械与轨道交通学院, 江苏 常州 213164; 2.江苏省能源动力高端装备工程研究中心, 江苏 常州 213164; 3.宁波洛卡特汽车零部件有限公司, 浙江 宁波 315300
Author(s):
LI Qianqian12 LU Yi1 CHANG Ailian12 NI Zuguo3 GUO Chunlin3
1.School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; 2.Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment, Changzhou 213164, China; 3.Ningbo Rocket Automobile Rocket Parts Co., Ltd., Ningbo 315300, China
关键词:
旋涡泵 水力性能 能量交换 纵向旋涡 在轨加注
Keywords:
regenerative flow pump hydraulic performance energy exchange longitudinal vortex on-orbit filling
分类号:
TH 314
DOI:
10.3969/j.issn.2095-0411.2024.05.005
文献标志码:
A
摘要:
传统的在轨加注容积泵因体积大、可靠性差等难以满足在轨加注对轻量化、强可靠性加注泵的迫切需求。为此,提出具有小流量、高扬程特点的旋涡泵结构,探究其处于在轨加注环境下性能的变化规律,并结合内部流场进一步揭示其能量交换机制。结果表明,纵向旋涡引导旋涡泵内流体的循环流动来完成能量交换过程,且在不同因素作用下使旋涡泵性能呈现不同的变化趋势。随着转速的增大、输送介质密度的减小、动力黏度的增大以及含气量的减小,旋涡泵的压力增长速度加快,泵壳流道和叶轮流域间交换流动更加剧烈,纵向旋涡的强度增大,泵的做功能力增强,旋涡泵的扬程增大。但同时由于耗散损失的存在,水力效率的变化趋势则与之相反。
Abstract:
Owing to the large volume and poor reliability, the traditional positive displacement pump in on-orbit filling is hard to satisfy the requirement of light weight and strong reliability for circulating filling pump. Therefore, the regenerative flow pump(RFP)structure, which possesses the characteristics of low flow rate and high head, was proposed to explore the variation rules of RFP's hydraulic performance under the on-orbit filling environment, further to reveal the energy exchange mechanism in combination with the internal flow field. The results illustrate that, the longitudinal vortex guides the circulation flow inside RFP to complete energy exchange process, making the RFP's performance present different variation tendency under different factors. With the rotating speed increasing, the density of the conveying medium decreasing, the dynamic viscosity of the conveying medium increasing, and the air content decreasing, the pressure growth rate of RFP was accelerated. The exchange flow between the pump channel and impeller is more intense, the intensity of the longitudinal vortex is stronger, the work capacity of the pump is enhanced, and the RFP's head is increased. However, due to the existence of the dissipation loss, the changing trend of hydraulic efficiency is opposite.

参考文献/References:

[1] 王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009.
[2] 李永, 胡齐, 潘海林, 等. 推进剂在轨加注流体传输过程的数值模拟和地面试验研究[J]. 空间控制技术与应用, 2011, 37(4): 54-57.
[3] 吴少华, 祝海林, 唐鑫, 等. 影响高黏度齿轮泵容积效率因素分析[J]. 常州大学学报(自然科学版), 2022, 34(2): 45-52.
[4] 李亮亮, 邹旻, 任爽, 等. 基于Fluent动网格技术三维莱洛泵流场分析[J]. 常州大学学报(自然科学版), 2021, 33(1): 57-61.
[5] 金林, 祝海林, 彭雨萌, 等. 齿轮泵液压径向力精确计算及仿真分析[J]. 常州大学学报(自然科学版), 2019, 31(1): 50-54.
[6] APPIAH D, ZHANG F, YUAN S Q, et al. Effects of the geometrical conditions on the performance of a side channel pump: a review[J]. International Journal of Energy Research, 2018, 42(2): 416-428.
[7] NEJADALI J. Analysis and evaluation of the performance and utilization of regenerative flow pump as turbine(PAT)in Pico-hydropower plants[J]. Energy for Sustainable Development, 2021, 64: 103-117.
[8] 李仁年, 李瑾, 权辉, 等. 叶栅内压力脉动特性及其对流致噪声的影响[J]. 机械工程学报, 2019, 55(8): 225-232.
[9] 王洋, 胡日新, 汤海涛, 等. 小流量工况下旋涡自吸泵流动降噪优化研究[J]. 农业机械学报, 2017, 48(11): 188-195.
[10] BADAMI M, MURA M. Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system[J]. Energy Conversion and Management, 2010, 51(3): 553-560.
[11] BADAMI M, MURA M. Setup and validation of a regenerative compressor model applied to different devices[J]. Energy Conversion and Management, 2011, 52(5): 2157-2164.
[12] SONG J W, ENGEDA A, CHUNG M K. A modified theory for the flow mechanism in a regenerative flow pump[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(3): 311-321.
[13] FLEDER A, BÖHLE M. A systematical study of the influence of blade number on the performance of a side channel pump[J]. Journal of Fluids Engineering, 2019, 141(11): 111109.
[14] FLEDER A, BÖHLE M. A systematical study of the influence of blade length, blade width, and side channel height on the performance of a side channel pump[J]. Journal of Fluids Engineering, 2015, 137(12): 121102.
[15] CHEN K, ZHANG F, APPIAH D, et al. Effect of blade tip cutting angle on energy conversion mechanism of side channel pumps[J]. Physics of Fluids, 2022, 34(2): 025107.
[16] LI Q Q, ZHAO G S, WU C S, et al. Investigation on the energy exchange characteristics of the regenerative flow pump in an automobile fuel system[J]. Journal of Fluids Engineering, 2020, 142(11): 111206.
[17] WANG Y F, ZHANG F, YUAN S Q, et al. Effect of URANS and hybrid RANS-large eddy simulation turbulence models on unsteady turbulent flows inside a side channel pump[J]. Journal of Fluids Engineering, 2020, 142(6): 061503.
[18] LI Q Q, WU C S, QIAN B, et al. Investigation of the matching relation between impeller and flow channel of regenerative flow pumps[J]. Journal of Fluids Engineering, 2021, 143(6): 061209.
[19] 张凡. 不同结构参数旋涡泵内部流场的数值模拟[D]. 兰州: 兰州理工大学, 2010.
[20] ZHANG F, APPIAH D, CHEN K, et al. Dynamic characterization of vortex structures and their evolution mechanisms in a side channel pump[J]. Journal of Fluids Engineering, 2020, 142(11): 111502.
[21] 彭小勇, 顾炜莉, 柳建祥, 等. 低速气体流动不可压缩性理论解析[J]. 南华大学学报(自然科学版), 2004, 18(3): 34-35, 40.
[22] ZHANG F, APPIAH D, HONG F, et al. Energy loss evaluation in a side channel pump under different wrapping angles using entropy production method[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104526.
[23] 张帆, 袁寿其, 魏雪园, 等. 基于熵产的侧流道泵流动损失特性研究[J]. 机械工程学报, 2018, 54(22): 137-144.

备注/Memo

备注/Memo:
收稿日期: 2024-03-05。
基金项目: 国家自然科学基金资助项目(52206041); 江苏省能源动力高端装备工程研究中心开放课题基金资助项目(JSNYDL-202207); 常州大学科研启动基金资助项目(ZMF21020356)。
作者简介: 李倩倩(1993—), 女, 河南驻马店人, 博士, 讲师。通信联系人: 常爱莲(1991—), E-mail: cal@cczu.edu.cn
更新日期/Last Update: 1900-01-01