[1]杨珺,陆荻,宋雨楠,等.致密油藏强毛管力约束条件下多相渗流规律[J].常州大学学报(自然科学版),2024,36(06):1-11.[doi:10.3969/j.issn.2095-0411.2024.06.001]
 YANG Jun,LU Di,SONG Yunan,et al.An analytical model for multiphase flow in tight oil reservoirs under strong capillary force constraints[J].Journal of Changzhou University(Natural Science Edition),2024,36(06):1-11.[doi:10.3969/j.issn.2095-0411.2024.06.001]
点击复制

致密油藏强毛管力约束条件下多相渗流规律()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年06期
页码:
1-11
栏目:
石油与天然气工程
出版日期:
2024-12-03

文章信息/Info

Title:
An analytical model for multiphase flow in tight oil reservoirs under strong capillary force constraints
文章编号:
2095-0411(2024)06-0001-11
作者:
杨珺1陆荻2宋雨楠1何岩峰1王骏3赵静1
1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.里贾纳大学 数学系, 萨斯喀彻温 里贾纳 S4S 7J7; 3.低渗透油气田勘探开发国家工程实验室, 陕西 西安 710018
Author(s):
YANG Jun1 LU Di2 SONG Yunan1 HE Yanfeng1 WANG Jun3 ZHAO Jing1
(1.School of Petroleum Engineering, Changzhou University, Changzhou 213164, China; 2.Department of Mathematics, University of Regina, Regina S4S 7J7, Canada; 3.National Engineering Laboratory for Exploration and Development of Low-Permeable Oil and Gas Fields, Xi'an 710018, China)
关键词:
非常规油气藏开发 油水两相渗流 水驱 油层物理 解析模型
Keywords:
unconventional oil and gas reservoir development oil-water two-phase flow water flooding petrophysics analytic model
分类号:
O 359+.2
DOI:
10.3969/j.issn.2095-0411.2024.06.001
文献标志码:
A
摘要:
针对强毛管力条件的多孔介质,在结合实验数据进行合理简化的基础上,建立了新的油水两相渗吸模型,并采用拉普拉斯变换的方法,成功求解强毛管力项作用下的典型非线性偏微分方程。最后,通过与全隐式有限差分法计算的数值解结果,以及室内实验数据进行对比,证明了该解法在强毛管力条件下,一维两相不可压缩渗流问题中的可行性和准确性。研究提出了通过建立解析模型,在致密油藏强毛管力约束条件下,量化油水两相渗吸过程流量与饱和度的时间、空间分布动态规律的方法,有效解决了Buckley-Leverett方程在计算致密油藏介观尺度渗流过程的局限性。
Abstract:
This paper presents an analytical solution for spontaneous and forced imbibition in porous media and proposes the corresponding simplified algorithm. The solving method employs Laplace transforms and successfully addresses typical nonlinear partial differential equations. Finally, after comparing with the numerical solutions computed by fully implicit finite difference method, the feasibility and accuracy of this method in one-dimensional two-phase flow is proved. An analytical model is developed in this study, which solves dynamic flow rate and saturation of biphasic fluid flow in porous media with non-negligible capillary forces, such as tight oil reservoirs. The proposed method can quantify fluid flow in porous media with significant capillary forces that is unable to be solved by Buckley-Leverett approach.

参考文献/References:

[1] 杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、 潜力及前景[J]. 中国石油勘探, 2019, 24(5): 560-568.
[2] 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.
[3] 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196.
[4] LUCAS R. Rate of capillary ascension of liquids[J].Kolloid Z, 1918, 23(15): 15-22.
[5] MCWHORTER D B, SUNADA D K. Exact integral solutions for two-phase flow[J]. Water Resources Research, 1990, 26(3): 399-413.
[6] SCHMID K S, GEIGER S, SORBIE K S. Semianalytical solutions for cocurrent and countercurrent imbibition and dispersion of solutes in immiscible two-phase flow[J]. Water Resources Research, 2011, 47(2): W02550.
[7] SCHMID K S, GEIGER S. Universal scaling of spontaneous imbibition for arbitrary petrophysical properties: water-wet and mixed-wet states and Handy's conjecture[J]. Journal of Petroleum Science and Engineering, 2013, 101: 44-61.
[8] BJØRNARÅ T I, MATHIAS S A. A pseudospectral approach to the McWhorter and Sunada equation for two-phase flow in porous media with capillary pressure[J]. Computational Geosciences, 2013, 17(6): 889-897.
[9] BUCKLEY S E, LEVERETT M C. Mechanism of fluid displacement in sands[J]. Transactions of the AIME, 1959, 146(1): 107-116.
[10] YORTSOS Y C, FOKAS A S. An analytical solution for linear waterflood including the effects of capillary pressure[J]. SPE Journal, 1983, 23(1): 115-124.
[11] ALRAMADHAN A, YILDIRAY C. QEMSCAN-assisted interpretation of imbibition capillary pressure for multiporosity carbonate rocks[J]. SPE Journal, 2021, 26(3): 1261-1277.
[12] WEI B, LI Q, YANG W, et al. In-situ visualization of imbibition process using a fracture-matrix micromodel: effect of surfactant formulations toward nanoemulsion and microemulsion[J]. SPE Journal, 2023, 28(4): 2021-2035.
[13] DU S, LEE S, WEN X H, et al. A similarity solution for imbibition process and its adaptation in finite difference simulation of fractured reservoirs[C]//SPE Reservoir Simulation Conference. [S.l.:s.n.], 2021.
[14] DENG L, KING M J. Theoretical investigation of the transition from spontaneous to forced imbibition[J]. SPE Journal, 2019, 24(1): 215-229.
[15] ABATE J, WHITT W. A unified framework for numerically inverting Laplace transforms[J]. Informs Journal on Computing, 2006, 18(4): 408-421.
[16] WANG X K, SHENG J J. A self-similar analytical solution of spontaneous and forced imbibition in porous media[J]. Advances in Geo-Energy Research, 2018, 2(3): 260-268.
[17] QI S C, YU H Y, HAN X B, et al. Countercurrent imbibition in low-permeability porous media: non-diffusive behavior and implications in tight oil recovery[J]. Petroleum Science, 2023, 20(1): 322-336.
[18] SAKHAEE-POUR A, BRYANT S L. Pore structure of shale[J]. Fuel, 2015, 143: 467-475.
[19] COREY A T. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 1954, 19(1): 38-44.

备注/Memo

备注/Memo:
收稿日期: 2024-08-09。
基金项目: 常州大学科研启动基金资助项目(ZMF23020043)。
作者简介: 杨珺(1990—), 男, 上海黄浦人, 博士, 讲师。通信联系人: 何岩峰(1973—), E-mail: heyanfeng@cczu.edu.cn
更新日期/Last Update: 1900-01-01