[1]闫霄鹏,邓嵩,彭浩平,等.裂缝地层多粒径刚性颗粒封堵离散元模拟[J].常州大学学报(自然科学版),2024,36(06):12-18.[doi:10.3969/j.issn.2095-0411.2024.06.002]
 YAN Xiaopeng,DENG Song,PENG Haoping,et al.Discrete element simulation of multi-sized rigid particles plugging mechanism in fractured formation[J].Journal of Changzhou University(Natural Science Edition),2024,36(06):12-18.[doi:10.3969/j.issn.2095-0411.2024.06.002]
点击复制

裂缝地层多粒径刚性颗粒封堵离散元模拟()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年06期
页码:
12-18
栏目:
石油与天然气工程
出版日期:
2024-12-03

文章信息/Info

Title:
Discrete element simulation of multi-sized rigid particles plugging mechanism in fractured formation
文章编号:
2095-0411(2024)06-0012-07
作者:
闫霄鹏1邓嵩12彭浩平1康毅力3杨凯1游孝明1
1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.中国石油大学华东石油工程学院, 山东 青岛 266580; 3.西南石油大学 油气藏地质及开发工程全国重点实验室, 四川 成都 610500
Author(s):
YAN Xiaopeng1 DENG Song12 PENG Haoping1 KANG Yili3 YANG Kai1 YOU Xiaoming1
(1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; 2.School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, China; 3.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)
关键词:
深层裂缝性地层 堵漏 颗粒架桥填充 封堵层
Keywords:
deep fractured formation lost circulation control particle bridging and filling plugging zone
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2024.06.002
文献标志码:
A
摘要:
针对深层裂缝性地层堵漏成功率低的问题,利用开源离散元模拟程序LIGGGHTS,建立了毫米级楔形裂缝内多粒径颗粒体系滞留架桥、堆积填充模型,研究了架桥颗粒粒径、质量浓度、摩擦系数、填充颗粒粒径等参数对毫米级漏失裂缝封堵效能的影响机制,揭示了多粒径刚性颗粒裂缝封堵机理。结果表明毫米级裂缝中架桥粒径、质量浓度和摩擦系数等存在临界条件,当架桥粒径缝宽比、质量浓度和摩擦系数构成的坐标点位于临界架桥曲面上部时,架桥必然发生。当架桥颗粒粒径确定时,颗粒堆积填充效能受填充颗粒粒径、质量浓度共同控制,裂缝堆积填充存在最低裂缝封堵层孔隙度值,可作为填充材料选择的关键指标。
Abstract:
Tackling the challenge of low success rates in plugging deep fractured formations, a model has been developed using discrete element numerical theory and the open-source LIGGGHTS discrete element simulation software. This model captures the retention, bridging, accumulation, and compaction of multi-diameter particle systems within millimeter-scale wedge-shaped fractures. The effects of parameters such as diameter, concentration, and friction coefficient of bridging particles, and diameter and concentration of packing particles on the plugging efficacy of millimeter-scale loss channels have been investigated. These studies have unveiled the plugging mechanism involving multi-size rigid particles. The findings reveal a critical set of parameters comprising bridging particle diameters, concentrations, and friction coefficients for millimeter-wide fractures. Plugging is indeed achieved when the assemblage of ratio coordinates derived from the bridging particle diameter, fracture width, concentration, and friction coefficient lies above the critical bridging surface. When bridge-forming particle diameters are established, the efficiency of particle packing is determined by the combined impact of packing particle size and their respective proportions. For millimeter-scale fracture widths, there exists a minimum plugging porosity value for accumulation and packing, which can serve as a crucial indicator for selecting filling materials.

参考文献/References:

[1] 罗俊如, 丁言瑞, 徐明华, 等. 基于深度AUC最大化算法的井漏风险预测[J]. 常州大学学报(自然科学版), 2024, 36(3): 34-44.
[2] YAN X P, KANG Y L, YOU L J, et al. Drill-in fluid loss mechanisms in brittle gas shale: a case study in the Longmaxi formation, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 174: 394-405.
[3] 陈卓, 耿立军, 岳明, 等. 渤中13-2区块复杂薄弱层高强度承压堵漏技术研究及应用[J]. 常州大学学报(自然科学版), 2023, 35(4): 77-86.
[4] 蒋官澄, 董腾飞, 崔凯潇, 等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发, 2022, 49(3): 577-585.
[5] 宫闻浩, 李朝玮, 李栋, 等. 基于异质集成的井漏预警模型[J]. 常州大学学报(自然科学版), 2024, 36(2): 39-47.
[6] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021, 48(3): 630-638.
[7] 中华人民共和国国家发展和改革委员会. 钻井液用桥接堵漏材料室内试验方法: SY/T 5840—2007[S]. 北京: 石油工业出版社, 2008.
[8] 康毅力, 余海峰, 许成元, 等. 毫米级宽度裂缝封堵层优化设计[J]. 天然气工业, 2014, 34(11): 88-94.
[9] LI J, QIU Z S, ZHONG H Y, et al. Optimizing selection method of continuous particle size distribution for lost circulation by dynamic fracture width evaluation device[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108304.
[10] 张世锋, 王相, 崔新颖, 等. 基于改进理想充填理论的堵漏颗粒粒径分布设计方法[J]. 常州大学学报(自然科学版), 2021, 33(3): 54-59.
[11] WANG G, PU X L. Discrete element simulation of granular lost circulation material plugging a fracture[J]. Particulate Science and Technology, 2014, 32(2): 112-117.
[12] 冯永存, 马成云, 楚明明, 等. 刚性颗粒封堵裂缝地层漏失机制数值模拟[J]. 天然气工业, 2021, 41(7): 93-100.
[13] ZHU B Y, TANG H M, YIN S L, et al. Experimental and numerical investigations of particle plugging in fracture-vuggy reservoir: a case study[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109610.
[14] SHIRGAONKAR A A, MACIVER M A, PATANKAR N A. A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion[J]. Journal of Computational Physics, 2009, 228(7): 2366-2390.
[15] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.

备注/Memo

备注/Memo:
收稿日期: 2024-07-04。
基金项目: 国家重点研发计划资助项目(2022YFC2806403); 2022年常州市领军型创新人才引进培育资助项目(CQ20220087); 常州大学科研启动基金资助项目(ZMF23020041)。
作者简介: 闫霄鹏(1992—), 男, 河南许昌人, 博士, 讲师。 通信联系人: 邓嵩(1989—), E-mail: dengsong@cczu.edu.cn
更新日期/Last Update: 1900-01-01