参考文献/References:
[1] MIRKOVIC T, OSTROUMOV E E, ANNA J M, et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms[J]. Chemical Reviews, 2017, 117(2): 249-293.
[2] WANG M M, SONG Y, ZHANG S, et al. Programmable two-dimensional nanocrystals assembled from POSS-containing peptoids as efficient artificial light-harvesting systems[J]. Science Advances, 2021, 7(20): eabg1448.
[3] PENG H Q, NIU L Y, CHEN Y Z, et al. Biological applications of supramolecular assemblies designed for excitation energy transfer[J]. Chemical Reviews, 2015, 115(15): 7502-7542.
[4] HAO M, SUN G P, ZUO M Z, et al. A supramolecular artificial light-harvesting system with two-step sequential energy transfer for photochemical catalysis[J]. Angewandte Chemie(International Ed in English), 2020, 59(25): 10095-10100.
[5] ZHANG Z Y, ZHAO Z Q, WU L W, et al. Emissive platinum(II)cages with reverse fluorescence resonance energy transfer for multiple sensing[J]. Journal of the American Chemical Society, 2020, 142(5): 2592-2600.
[6] WANG X H, LOU X Y, LU T, et al. Supramolecular engineering of efficient artificial light-harvesting systems from cyanovinylene chromophores and pillar[5]arene-based polymer hosts[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4593-4604.
[7] RAO K V, DATTA K K, ESWARAMOORTHY M, et al. Light-harvesting hybrid hydrogels: energy-transfer-induced amplified fluorescence in noncovalently assembled chromophore-organoclay composites[J]. Angewandte Chemie(International Ed in English), 2011, 50(5): 1179-1184.
[8] ZUO M Z, QIAN W R, LI T H, et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39214-39221.
[9] SUN G P, CAI L J, ZHANG Y, et al. Salicylideneaniline-based aqueous supramolecular artificial light-harvesting platforms with biocompatibility[J]. Dyes and Pigments, 2022, 205: 110577.
[10] WANG X H, SONG N, HOU W, et al. Efficient aggregation-induced emission manipulated by polymer host materials[J]. Advanced Materials, 2019, 31(37): e1903962.
[11] LI W J, WANG X Q, ZHANG D Y, et al. Artificial light-harvesting systems based on aiegen-branched rotaxane dendrimers for efficient photocatalysis[J]. Angewandte Chemie(International Ed in English), 2021, 60(34): 18761-18768.
[12] GUO S W, SONG Y S, HE Y L, et al. Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly[J]. Angewandte Chemie(International Ed in English), 2018, 57(12): 3163-3167.
[13] XIAO T X, WEI X Y, WU H R, et al. Acetal-based spirocyclic skeleton bridged tetraphenylethylene dimer for light-harvesting in water with ultrahigh antenna effect[J]. Dyes and Pigments, 2021, 188: 109161.
[14] LI J J, CHEN Y, YU J, et al. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect[J]. Advanced Materials, 2017, 29(30): 1701905.
[15] SUN G P, QIAN W R, JIAO J M, et al. A highly efficient artificial light-harvesting system with two-step sequential energy transfer based on supramolecular self-assembly[J]. Journal of Materials Chemistry A, 2020, 8(19): 9590-9596.
[16] SUN G P, WANG Z X, HU Y Q, et al. Anthryl-cinnamonitrile-based supramolecular artificial light-harvesting systems with high efficiency fabricated in aqueous solution[J]. Dyes and Pigments, 2022, 197: 109913.
相似文献/References:
[1]肖唐鑫,周玲,魏小艳,等.脲基嘧啶酮衍生的苯并21冠7的合成及其主客体行为[J].常州大学学报(自然科学版),2021,33(01):29.[doi:10.3969/j.issn.2095-0411.2021.01.005]
XIAO Tangxin,ZHOU Ling,WEI Xiaoyan,et al.Synthesis of Ureidopyrimidinone-Linked Benzo-21-Crown-7 and Its Host-Guest Behaviors[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):29.[doi:10.3969/j.issn.2095-0411.2021.01.005]