[1]王乾,朱雪,王绍强,等.木质素添加对基膜及纳滤膜结构和性能的影响[J].常州大学学报(自然科学版),2024,36(06):37-43.[doi:10.3969/j.issn.2095-0411.2024.06.005]
 WANG Qian,ZHU Xue,WANG Shaoqiang,et al.Effect of lignin addition on the structure and performance of substrate and nanofiltration membrane[J].Journal of Changzhou University(Natural Science Edition),2024,36(06):37-43.[doi:10.3969/j.issn.2095-0411.2024.06.005]
点击复制

木质素添加对基膜及纳滤膜结构和性能的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年06期
页码:
37-43
栏目:
化学化工
出版日期:
2024-12-03

文章信息/Info

Title:
Effect of lignin addition on the structure and performance of substrate and nanofiltration membrane
文章编号:
2095-0411(2024)06-0037-07
作者:
王乾朱雪王绍强周政忠呼和涛力
常州大学 城乡矿山研究院, 江苏 常州 213164; 生物质高效炼制及高质化利用国家地方联合工程研究中心常州大学, 江苏 常州 213164
Author(s):
WANG Qian ZHU Xue WANG Shaoqiang ZHOU Zhengzhong HUHE Taoli
(Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, China)
关键词:
纳滤膜 木质素 界面聚合 共混
Keywords:
nanofiltration membrane lignin interfacial polymerization blending
分类号:
TQ 051.893
DOI:
10.3969/j.issn.2095-0411.2024.06.005
文献标志码:
A
摘要:
为了打破纳滤膜渗透性能与截留性能之间的权衡效应,通过在基膜中共混生物质材料木质素来调控界面聚合。在界面聚合过程中,基膜中的木质素吸附胺单体并抑制其扩散,从而使得聚酰胺选择层更薄、更致密。相较于传统的纳滤膜,在0.6 MPa下,基膜共混木质素纳滤膜过滤硫酸钠的渗透通量从84.6 L·m-2·h-1提高到139.2 L·m-2·h-1,截留率从93.4%提高到96.0%。这不仅能够为高性能纳滤膜的制备提供思路,同时为生物质利用提供新方向。
Abstract:
To break the trade-off between the permeability and rejection performance of nanofiltration(NF)membrane, the interfacial polymerization(IP)reaction is regulated by blinding biomass material lignin in the substrates. During the IP process, lignin in the substrate adsorbed amine monomers and inhibits their diffusion rate, resulting in a thinner and denser polyamide selective layer. Compared to traditional NF membranes, the permeability of Na2SO4 solution by blending lignin NF membrane increased from 84.6 L·m-2·h-1 to 139.2 L·m-2·h-1, and the rejection increased from 93.4% to 96.0%. This work not only provides ideas for the preparation of high-performance NF membranes, but also provides solutions for biomass utilization.

参考文献/References:

[1] 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104.
[2] QIANG X F, LUO J Q, GUO S W, et al. A novel process for molasses utilization by membrane filtration and resin adsorption[J]. Journal of Cleaner Production, 2019, 207: 432-443.
[3] 丁科仁, 赵丽红, 郭佳艺, 等. 基于界面聚合技术的复合纳滤膜改性研究进展[J]. 水处理技术, 2023, 49(6): 27-32.
[4] TAN Z, CHEN S F, PENG X S, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science, 2018, 360(6388): 518-521.
[5] WU B, WANG N X, SHEN Y, et al. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation[J]. Journal of Membrane Science, 2023, 666: 121144.
[6] CAO X L, GUO J L, CAI J, et al. The encouraging improvement of polyamide nanofiltration membrane by cucurbituril-based host-guest chemistry[J]. AIChE Journal, 2020, 66(4): e16879.
[7] JIANG C, ZHANG L P, LI P, et al. Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25304-25315.
[8] ZHU C Y, LIU C, YANG J, et al. Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration[J]. Journal of Membrane Science, 2021, 627: 119142.
[9] YANG Z, SUN P F, LI X H, et al. A critical review on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent developments, and environmental applications[J]. Environmental Science & Technology, 2020, 54(24): 15563-15583.
[10] YUAN B B, WANG N, ZHAO S H, et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl-/ SO2-4 [J]. Desalination, 2022, 538: 115929.
[11] SABAGHI S, ALIPOORMAZANDARANI N, GAO W J, et al. Dual lignin-derived polymeric systems for hazardous ion removals[J]. Journal of Hazardous Materials, 2021, 417: 125970.
[12] SAPOUNA I, LAWOKO M. Deciphering lignin heterogeneity in ball milled softwood: unravelling the synergy between the supramolecular cell wall structure and molecular events[J]. Green Chemistry, 2021, 23(9): 3348-3364.
[13] MELRO E, FILIPE A, SOUSA D, et al. Revisiting lignin: a tour through its structural features, characterization methods and applications[J]. New Journal of Chemistry, 2021, 45(16): 6986-7013.
[14] RABILLER-BAUDRY M, BOUZIN A, HALLERY C, et al. Evidencing the chemical degradation of a hydrophilised PES ultrafiltration membrane despite protein fouling[J]. Separation and Purification Technology, 2015, 147: 62-81.
[15] ZHAO Y M, SHAN X C, AN Q D, et al. Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture[J]. Chemical Engineering Journal, 2020, 398: 125561.

相似文献/References:

[1]宋 艳,宗 旭,张 鑫,等.水热法制备羟甲基化木质素工艺研究[J].常州大学学报(自然科学版),2021,33(02):8.[doi:10.3969/j.issn.2095-0411.2021.02.002]
 SONG Yan,ZONG Xu,ZHANG Xin,et al.Methylolation of Lignin by Hydrothermal Method[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):8.[doi:10.3969/j.issn.2095-0411.2021.02.002]

备注/Memo

备注/Memo:
收稿日期: 2024-07-01。
基金项目: 常州市应用基础研究计划资助项目(CJ20230034)。
作者简介: 王乾(1993—), 男, 江苏盐城人, 博士, 讲师。通信联系人: 周政忠(1982—), E-mail: zhouzhengzhong@cczu.edu.cn
更新日期/Last Update: 1900-01-01