[1]尹冬敏,夏禧龙,毛洪刚,等.中温厌氧发酵中初始pH和尿酸质量浓度对氨氮释放规律的影响[J].常州大学学报(自然科学版),2024,36(06):44-53.[doi:10.3969/j.issn.2095-0411.2024.06.006]
 YIN Dongmin,XIA Xilong,MAO Honggang,et al.Effect of initial pH and concentration of uric acid on ammonium emission during mesophilic anaerobic digestion[J].Journal of Changzhou University(Natural Science Edition),2024,36(06):44-53.[doi:10.3969/j.issn.2095-0411.2024.06.006]
点击复制

中温厌氧发酵中初始pH和尿酸质量浓度对氨氮释放规律的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年06期
页码:
44-53
栏目:
环境科学与工程
出版日期:
2024-12-03

文章信息/Info

Title:
Effect of initial pH and concentration of uric acid on ammonium emission during mesophilic anaerobic digestion
文章编号:
2095-0411(2024)06-0044-10
作者:
尹冬敏12夏禧龙12毛洪刚23朱李霞23任建军12
1.常州大学 城乡矿山研究院, 江苏 常州 213164; 2.常州市生物质绿色安全高值利用技术重点实验室常州大学, 江苏 常州 213164; 3.常州大学 药学院, 江苏 常州 213164
Author(s):
YIN Dongmin12 XIA Xilong12 MAO Honggang23 ZHU Lixia23 REN Jianjun12
(1.Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; 2.Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou 213164, China; 3.School of Pharmacy, Changzhou University, Changzhou 213164, China)
关键词:
厌氧发酵 尿酸 氨抑制 初始pH
Keywords:
anaerobic digestion uric acid ammonia inhibition initial pH
分类号:
X 787
DOI:
10.3969/j.issn.2095-0411.2024.06.006
文献标志码:
A
摘要:
以乙酸为碳源、尿酸为氮源,开展不同尿酸质量浓度和不同初始pH条件下的乙酸产甲烷潜能与动力学试验,探究中温条件下尿酸的氨氮释放规律及其对产甲烷过程的影响。结果显示,未调节发酵pH条件下,尿酸会迅速降解生成氨氮,乙酸产甲烷过程的抑制程度随尿酸质量浓度的升高(0~18 g/L)而逐渐升高。调节发酵初始pH后,尿酸的降解受到不同程度的抑制,初始pH为6.75和6.50时,18%~20%的尿酸受到抑制而未降解为氨氮,发酵系统的负荷可提高22%~25%,有效缓解氨氮抑制。
Abstract:
In the current research, batch assays were carried out under mesophilic condition to explore the methanogenic potential and kinetics from acetic acid with different initial pH and concentrations of uric acid. Ammonia nitrogen released from uric acid was further analyzed to demonstrate the possibility that the uric acid degradation process could be inhibited by adjusting initial pH. Results showed that uric acid could degrade to ammonia nitrogen rapidly under normal digested conditions. Methanogenesis activity of acetic acid was gradually inhibited associated with the increase of initial concentrations of uric acid(0—18 g/L)and ammonium concentration. At initial pH of 6.75 and 6.50, about 18%—20% of uric acid was inhibited and could not degrades to ammonia nitrogen, which could improve the organic loading rate by around 22%—25%, and the methanogenic potential of acetic acid was almost no limited, which effectively alleviated the inhibition of ammonia nitrogen.

参考文献/References:

[1] 刘源, 张院萍. 重点流域农业面源污染综合治理示范工程建设规划(2016—2020年)[J]. 中国畜牧业, 2017, 5(11): 36-42.
[2] 申荣艳, 樊思慰, 王永娃, 等. 玉米秸秆处理餐饮废水厌氧发酵初步研究[J]. 常州大学学报(自然科学版), 2020, 32(5): 58-66.
[3] WANG C, YIN S S, BAI L, et al. High-resolution ammonia emission inventories with comprehensive analysis and evaluation in Henan, China, 2006—2016[J]. Atmospheric Environment, 2018, 193: 11-23.
[4] 张增杰, 张双, 韩玉花, 等. 农业源氨排放控制对策初步研究[J]. 江苏农业科学, 2016, 44(1): 439-442.
[5] 刘毅, 李欣. 北京市大中型沼气工程运行现状研究[J]. 化工管理, 2015(28): 108-111.
[6] 张鹤亮, 谷子林, 刘平祥, 等. 鸡粪饲料生产利用技术[M]. 石家庄: 河北科学技术出版社, 1998.
[7] 乔玮, 毕少杰, 熊林鹏, 等. 进料浓度对鸡粪长期高温甲烷发酵的影响[J]. 中国环境科学, 2018, 38(7): 2593-2601.
[8] NIU Q G, QIAO W, QIANG H, et al. Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia[J]. Bioresource Technology, 2013, 146: 223-233.
[9] NIE H, JACOBI H F, STRACH K, et al. Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate[J]. Bioresource Technology, 2015, 178: 238-246.
[10] BI S J, WESTERHOLM M, QIAO W, et al. Metabolic performance of anaerobic digestion of chicken manure under wet, high solid, and dry conditions[J]. Bioresource Technology, 2020, 296: 122342.
[11] 乔玮, 熊林鹏, 毕少杰, 等. 梯度提高进料浓度对鸡粪连续中温发酵产甲烷的影响[J]. 农业工程学报, 2018, 34(9): 233-239.
[12] BI S J, QIAO W, XIONG L P, et al. Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway[J]. Renewable Energy, 2020, 146: 2380-2389.
[13] VASTRA L. Ammonia stripping of ammonified chicken litter in pilot scale[D]. Helsinki: Aalto University, 2017.
[14] YIN D M, TAHERZADEH M J, LIN M, et al. Upgrading the anaerobic membrane bioreactor treatment of chicken manure by introducing in situ ammonia stripping and hyper-thermophilic pretreatment[J]. Bioresource Technology, 2020, 310: 123470.
[15] BI S J, WESTERHOLM M, QIAO W, et al. Enhanced methanogenic performance and metabolic pathway of high solid anaerobic digestion of chicken manure by Fe2+ and Ni2+ supplementation[J]. Waste Management, 2019, 94: 10-17.
[16] MOLAEY R, BAYRAKDAR A, CALLI B. Long-term influence of trace element deficiency on anaerobic mono-digestion of chicken manure[J]. Journal of Environmental Management, 2018, 223: 743-748.
[17] 董良飞, 周凯迪. 新型厌氧膜生物反应器城市污泥消化研究[J]. 常州大学学报(自然科学版), 2018, 30(1): 1-8.
[18] POTRIKUS C J, BREZNAK J A. Anaerobic degradation of uric acid by gut bacteria of termites[J]. Applied and Environmental Microbiology, 1980, 40(1): 125-132.
[19] GILCREAS F W. Standard methods for the examination of water and waste water[J]. American Journal of Public Health and the Nation's Health, 1966, 56(3): 387-388.
[20] YIN D M, MAHBOUBI A, WAINAINA S, et al. The effect of mono- and multiple fermentation parameters on volatile fatty acids(VFAs)production from chicken manure via anaerobic digestion[J]. Bioresource Technology, 2021, 330: 124992.
[21] LI Q, QIAO W, WANG X C, et al. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge[J]. Waste Management, 2015, 36: 77-85.
[22] BUSWELL A M, MUELLER H F. Mechanism of methane fermentation[J]. Industrial & Engineering Chemistry, 1952, 44(3): 550-552.
[23] 乔玮, 毕少杰, 熊林鹏, 等. 氨氮浓度对鸡粪中高温甲烷发酵的影响[J]. 中国环境科学, 2019, 39(7): 2921-2927.
[24] WANG H, ZHANG Y F, ANGELIDAKI I. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions[J]. Water Research, 2016, 105: 314-319.
[25] 乔玮, 姜萌萌, 赵婧, 等. 中温和高温环境下乙酸和丙酸厌氧发酵产甲烷动力学特征[J]. 农业工程学报, 2018, 34(21): 234-238.
[26] SCHN?RER A, NORDBERG A. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature[J]. Water Science and Technology, 2008, 57(5): 735-740.
[27] NIU Q G, QIAO W, QIANG H, et al. Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: stability, inhibition and recovery[J]. Bioresource Technology, 2013, 137: 358-367.
[28] YIN D M, WESTERHOLM M, QIAO W, et al. An explanation of the methanogenic pathway for methane production in anaerobic digestion of nitrogen-rich materials under mesophilic and thermophilic conditions[J]. Bioresource Technology, 2018, 264: 42-50.

备注/Memo

备注/Memo:
收稿日期: 2024-08-05。
基金项目: 常州大学科研启动基金资助项目(ZMF22020022)。
作者简介: 尹冬敏(1993—), 女, 黑龙江齐齐哈尔人, 博士, 讲师。通信联系人: 任建军, E-mail: rjj@cczu.edu.cn
更新日期/Last Update: 1900-01-01