参考文献/References:
[1] 汪洪, 向勇, 项晓东, 等. 材料基因组: 材料研发新模式[J]. 科技导报, 2015, 33(10): 13-19.
[2] JAIN A, HAUTIER G, MOORE C J, et al. A high-throughput infrastructure for density functional theory calculations[J]. Computational Materials Science, 2011, 50(8): 2295-2310.
[3] CEDER G. Opportunities and challenges for first-principles materials design and applications to Li battery materials[J]. MRS Bulletin, 2010, 35(9): 693-701.
[4] HAUTIER G, JAIN A, CHEN H L, et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations[J]. Journal of Materials Chemistry, 2011, 21(43): 17147-17153.
[5] HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508.
[6] JAIN A, HAUTIER G, ONG S P, et al. Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5942-5953.
[7] ZU C X, LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624.
[8] ZHANG W B, CUPID D M, GOTCU P, et al. High-throughput description of infinite composition-structure-property-performance relationships of lithium-manganese oxide spinel cathodes[J]. Chemistry of Materials, 2018, 30(7): 2287-2298.
[9] XIAO R J, LI H, CHEN L Q. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations[J]. Journal of Materiomics, 2015, 1(4): 325-332.
[10] XIAO R J, LI H, CHEN L Q. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory[J]. Scientific Reports, 2015, 5: 14227.
[11] WANG X L, XIAO R J, LI H, et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics, 2016, 18(31): 21269-21277.
[12] WANG X L, XIAO R J, LI H, et al. Oxysulfide LiAlSO: a lithium superionic conductor from first principles[J]. Physical Review Letters, 2017, 118(19): 195901.
[13] KAHLE L, MARCOLONGO A, MARZARI N. High-throughput computational screening for solid-state Li-ion conductors[J]. Energy & Environmental Science, 2020, 13(3): 928-948.
[14] HE B, CHI S T, YE A J, et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms[J]. Scientific Data, 2020, 7(1): 151.
[15] HE B, YE A J, CHI S T, et al. CAVD, towards better characterization of void space for ionic transport analysis[J]. Scientific Data, 2020, 7(1): 153.
[16] PAN L, ZHANG L W, YE A J, et al. Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method[J]. Journal of Materiomics, 2019, 5(4): 688-695.
[17] NAVEED A, YANG H J, SHAO Y Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries[J]. Advanced Materials, 2019, 31(36): e1900668.
[18] ZHANG L W, HE B, ZHAO Q, et al. A database of ionic transport characteristics for over 29 000 inorganic compounds[J]. Advanced Functional Materials, 2020, 30(35): 2003087.
[19] FITZHUGH W, WU F, YE L H, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21): 1900807.
[20] AYKOL M, KIM S, HEGDE V I, et al. High-throughput computational design of cathode coatings for Li-ion batteries[J]. Nature Communications, 2016, 7: 13779.
[21] GOLL D, LOEFFLER R, HOHS D, et al. Reaction sintering as a high-throughput approach for magnetic materials development[J]. Scripta Materialia, 2018, 146: 355-361.
[22] 王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31-49.
[23] HANAK J J. The “multiple-sample concept” in materials research: synthesis, compositional analysis and testing of entire multicomponent systems[J]. Journal of Materials Science, 1970, 5(11): 964-971.
[24] SHI Y M, WANG Y, WONG J I, et al. Self-assembly of hierarchical MoSx/CNT nanocomposites(2<x<3): towards high performance anode materials for lithium ion batteries[J]. Scientific Reports, 2013, 3: 2169.
[25] FAN S F, LIM L Y, TAY Y Y, et al. Rapid fabrication of a novel Sn-Ge alloy: structure-property relationship and its enhanced lithium storage properties[J]. Journal of Materials Chemistry A, 2013, 1(46): 14577-14585.
[26] ADHIKARI T, HEBERT A, ADAMICˇ M, et al. Development of high-throughput methods for sodium-ion battery cathodes[J]. ACS Combinatorial Science, 2020, 22(6): 311-318.
[27] JONDERIAN A, ANDERSON E, PENG R, et al. Suite of high-throughput experiments for screening solid electrolytes for Li batteries[J]. Journal of the Electrochemical Society, 2022, 169(5): 050504.
[28] HU J T, LI W, DUAN Y D, et al. Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(5): 1601894.
[29] HU J T, JIANG Y, CUI S H, et al. 3D-printed cathodes of LiMn1-XFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery[J]. ECS Meeting Abstracts, 2016(2): 1228.
[30] QIAO R X, ZHANG M J, LIU Y D, et al. A novel real-time state-of-health and state-of-charge co-estimation method for LiFePO4 battery[J]. Chinese Physics Letters, 2016, 33(7): 078201.
[31] JONDERIAN A, JIA S P, YOON G, et al. Accelerated development of high voltage Li-ion cathodes[J]. Advanced Energy Materials, 2022, 12(40): 2201704.
[32] 杨丽, 苏航, 柴锋, 等. 材料数据库和数据挖掘技术的应用现状[J]. 中国材料进展, 2019, 38(7): 672-681, 650.
[33] 吴思远, 王宇琦, 肖睿娟, 等. 电池材料数据库的发展与应用[J]. 物理学报, 2020, 69(22): 1-10.
[34] JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002.
[35] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database(OQMD): assessing the accuracy of DFT formation energies[J]. NPJ Computational Materials, 2015, 1: 15010.
[36] SAAL J E, KIRKLIN S, AYKOL M, et al. Materials design and discovery with high-throughput density functional theory: the open quantum materials database(OQMD)[J]. JOM, 2013, 65(11): 1501-1509.
[37] CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: an automatic framework for high-throughput materials discovery[J]. Computational Materials Science, 2012, 58: 218-226.
[38] CURTAROLO S, SETYAWAN W, WANG S D, et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations[J]. Computational Materials Science, 2012, 58: 227-235.
[39] TAYLOR R H, ROSE F, TOHER C, et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium[J]. Computational Materials Science, 2014, 93: 178-192.
[40] YANG X Y, WANG Z G, ZHAO X S, et al. MatCloud: a high-throughput computational infrastructure for integrated management of materials simulation, data and resources[J]. Computational Materials Science, 2018, 146: 319-333.
[41] 中国科学院物理研究所. Atomly材料科学数据库[DB]. https: //atomly.net//.
[42] PIZZI G, CEPELLOTTI A, SABATINI R, et al. AiiDA: automated interactive infrastructure and database for computational science[J]. Computational Materials Science, 2016, 111: 218-230.
[43] ONG S P, RICHARDS W D, JAIN A, et al. Python materials genomics(pymatgen): a robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013, 68: 314-319.
[44] FUJIMURA K, SEKO A, KOYAMA Y, et al. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms[J]. Advanced Energy Materials, 2013, 3(8): 980-985.
[45] SENDEK A D, YANG Q, CUBUK E D, et al. Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials[J]. Energy & Environmental Science, 2017, 10(1): 306-320.
[46] SENDEK A D, CUBUK E D, ANTONIUK E R, et al. Machine learning-assisted discovery of solid Li-ion conducting materials[J]. Chemistry of Materials, 2019, 31(2): 342-352.
[47] JALEM R, AOYAMA T, NAKAYAMA M, et al. Multivariate method-assisted a b initio study of olivine-type LiMXO4(main group M2+-X5+ and M3+-X4+)compositions as potential solid electrolytes[J]. Chemistry of Materials, 2012, 24(7): 1357-1364.
[48] JALEM R, NAKAYAMA M, KASUGA T. An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks[J]. Journal of Materials Chemistry A, 2014, 2(3): 720-734.
[49] JALEM R, KIMURA M, NAKAYAMA M, et al. Informatics-aided density functional theory study on the Li ion transport of tavorite-type LiMTO4F(M(3+)-T(5+), M(2+)-T(6+))[J]. Journal of Chemical Information and Modeling, 2015, 55(6): 1158-1168.
[50] KIREEVA N, PERVOV V S. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(31): 20904-20918.
[51] XU Y J, ZONG Y, HIPPALGAONKAR K. Machine learning-assisted cross-domain prediction of ionic conductivity in sodium and lithium-based superionic conductors using facile descriptors[J]. Journal of Physics Communications, 2020, 4(5): 055015.
[52] ZHANG Y, HE X F, CHEN Z Q, et al. Unsupervised discovery of solid-state lithium ion conductors[J]. Nature Communications, 2019, 10(1): 5260.
[53] ZHAO Q, AVDEEV M, CHEN L Q, et al. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based(HECS)descriptors[J]. Science Bulletin, 2021, 66(14): 1401-1408.
[54] ZHAO Q, ZHANG L W, HE B, et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality[J]. Energy Storage Materials, 2021, 40: 386-393.