[1]赵倩,任玉荣.基于材料基因组的电池材料研究[J].常州大学学报(自然科学版),2025,37(01):1-14.[doi:10.3969/j.issn.2095-0411.2025.01.001]
 ZHAO Qian,REN Yurong.Research on battery materials based on material genome[J].Journal of Changzhou University(Natural Science Edition),2025,37(01):1-14.[doi:10.3969/j.issn.2095-0411.2025.01.001]
点击复制

基于材料基因组的电池材料研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第37卷
期数:
2025年01期
页码:
1-14
栏目:
材料科学与工程
出版日期:
2025-01-22

文章信息/Info

Title:
Research on battery materials based on material genome
文章编号:
2095-0411(2025)01-0001-14
作者:
赵倩任玉荣
常州大学 材料科学与工程学院, 江苏 常州 213164; 江苏省新能源汽车动力电池智能制造技术工程研究中心(常州大学),江苏 常州 213164; 常州市动力电池智能制造高技术重点实验室(常州大学), 江苏 常州 213164
Author(s):
ZHAO Qian REN Yurong
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China; Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou 213164, China
关键词:
材料基因组 电池材料 高通量计算 高通量实验 材料数据库
Keywords:
material genome battery material high-throughput computation high-throughput experiment material database
分类号:
TM 912.9
DOI:
10.3969/j.issn.2095-0411.2025.01.001
文献标志码:
A
摘要:
材料基因组计划(MGI)的核心理念是通过计算、实验和数据“三位一体”的方式,变革传统的“试错法”材料研发模式,加速材料从发现到应用的全过程。近年来,国内外研究人员在基于材料基因组的电池材料研发方面开展了一系列工作。文章主要围绕材料基因组技术,分别介绍了高通量计算、高通量实验和材料数据库三大要素的主要内容及其在电池材料领域的典型研究范例,指出借助材料基因组技术,可以并行的方式研究成分、结构、温度、合成方法等的变化对电池材料能量密度、循环性能、安全性等的影响,总结了该研究领域亟待解决的问题并展望了未来发展方向。
Abstract:
The core idea of the Materials Genome Initiative(MGI)is to change the traditional “trial and error” material research and development mode through the “trinity” of calculation, experiment and data, and accelerate the whole process from discovery to application of materials. In recent years, researchers at home and abroad have carried out a series of work in the research and development of battery materials based on material genome. This paper mainly focuses on material genome technology, and introduces the main contents of high-throughput computation, high-throughput experiment and material database, as well as the typical research examples in the field of battery materials. It is pointed out that the influence of the changes of composition, structure, temperature and synthesis methods on the energy density, cycle performance and safety of battery materials can be studied in a parallel manner with the help of material genome technology. The problems to be solved in this field are summarized and the future development is prospected.

参考文献/References:

[1] 汪洪, 向勇, 项晓东, 等. 材料基因组: 材料研发新模式[J]. 科技导报, 2015, 33(10): 13-19.
[2] JAIN A, HAUTIER G, MOORE C J, et al. A high-throughput infrastructure for density functional theory calculations[J]. Computational Materials Science, 2011, 50(8): 2295-2310.
[3] CEDER G. Opportunities and challenges for first-principles materials design and applications to Li battery materials[J]. MRS Bulletin, 2010, 35(9): 693-701.
[4] HAUTIER G, JAIN A, CHEN H L, et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations[J]. Journal of Materials Chemistry, 2011, 21(43): 17147-17153.
[5] HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508.
[6] JAIN A, HAUTIER G, ONG S P, et al. Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5942-5953.
[7] ZU C X, LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624.
[8] ZHANG W B, CUPID D M, GOTCU P, et al. High-throughput description of infinite composition-structure-property-performance relationships of lithium-manganese oxide spinel cathodes[J]. Chemistry of Materials, 2018, 30(7): 2287-2298.
[9] XIAO R J, LI H, CHEN L Q. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations[J]. Journal of Materiomics, 2015, 1(4): 325-332.
[10] XIAO R J, LI H, CHEN L Q. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory[J]. Scientific Reports, 2015, 5: 14227.
[11] WANG X L, XIAO R J, LI H, et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics, 2016, 18(31): 21269-21277.
[12] WANG X L, XIAO R J, LI H, et al. Oxysulfide LiAlSO: a lithium superionic conductor from first principles[J]. Physical Review Letters, 2017, 118(19): 195901.
[13] KAHLE L, MARCOLONGO A, MARZARI N. High-throughput computational screening for solid-state Li-ion conductors[J]. Energy & Environmental Science, 2020, 13(3): 928-948.
[14] HE B, CHI S T, YE A J, et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms[J]. Scientific Data, 2020, 7(1): 151.
[15] HE B, YE A J, CHI S T, et al. CAVD, towards better characterization of void space for ionic transport analysis[J]. Scientific Data, 2020, 7(1): 153.
[16] PAN L, ZHANG L W, YE A J, et al. Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method[J]. Journal of Materiomics, 2019, 5(4): 688-695.
[17] NAVEED A, YANG H J, SHAO Y Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries[J]. Advanced Materials, 2019, 31(36): e1900668.
[18] ZHANG L W, HE B, ZHAO Q, et al. A database of ionic transport characteristics for over 29 000 inorganic compounds[J]. Advanced Functional Materials, 2020, 30(35): 2003087.
[19] FITZHUGH W, WU F, YE L H, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21): 1900807.
[20] AYKOL M, KIM S, HEGDE V I, et al. High-throughput computational design of cathode coatings for Li-ion batteries[J]. Nature Communications, 2016, 7: 13779.
[21] GOLL D, LOEFFLER R, HOHS D, et al. Reaction sintering as a high-throughput approach for magnetic materials development[J]. Scripta Materialia, 2018, 146: 355-361.
[22] 王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31-49.
[23] HANAK J J. The “multiple-sample concept” in materials research: synthesis, compositional analysis and testing of entire multicomponent systems[J]. Journal of Materials Science, 1970, 5(11): 964-971.
[24] SHI Y M, WANG Y, WONG J I, et al. Self-assembly of hierarchical MoSx/CNT nanocomposites(2<x<3): towards high performance anode materials for lithium ion batteries[J]. Scientific Reports, 2013, 3: 2169.
[25] FAN S F, LIM L Y, TAY Y Y, et al. Rapid fabrication of a novel Sn-Ge alloy: structure-property relationship and its enhanced lithium storage properties[J]. Journal of Materials Chemistry A, 2013, 1(46): 14577-14585.
[26] ADHIKARI T, HEBERT A, ADAMICˇ M, et al. Development of high-throughput methods for sodium-ion battery cathodes[J]. ACS Combinatorial Science, 2020, 22(6): 311-318.
[27] JONDERIAN A, ANDERSON E, PENG R, et al. Suite of high-throughput experiments for screening solid electrolytes for Li batteries[J]. Journal of the Electrochemical Society, 2022, 169(5): 050504.
[28] HU J T, LI W, DUAN Y D, et al. Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(5): 1601894.
[29] HU J T, JIANG Y, CUI S H, et al. 3D-printed cathodes of LiMn1-XFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery[J]. ECS Meeting Abstracts, 2016(2): 1228.
[30] QIAO R X, ZHANG M J, LIU Y D, et al. A novel real-time state-of-health and state-of-charge co-estimation method for LiFePO4 battery[J]. Chinese Physics Letters, 2016, 33(7): 078201.
[31] JONDERIAN A, JIA S P, YOON G, et al. Accelerated development of high voltage Li-ion cathodes[J]. Advanced Energy Materials, 2022, 12(40): 2201704.
[32] 杨丽, 苏航, 柴锋, 等. 材料数据库和数据挖掘技术的应用现状[J]. 中国材料进展, 2019, 38(7): 672-681, 650.
[33] 吴思远, 王宇琦, 肖睿娟, 等. 电池材料数据库的发展与应用[J]. 物理学报, 2020, 69(22): 1-10.
[34] JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002.
[35] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database(OQMD): assessing the accuracy of DFT formation energies[J]. NPJ Computational Materials, 2015, 1: 15010.
[36] SAAL J E, KIRKLIN S, AYKOL M, et al. Materials design and discovery with high-throughput density functional theory: the open quantum materials database(OQMD)[J]. JOM, 2013, 65(11): 1501-1509.
[37] CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: an automatic framework for high-throughput materials discovery[J]. Computational Materials Science, 2012, 58: 218-226.
[38] CURTAROLO S, SETYAWAN W, WANG S D, et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations[J]. Computational Materials Science, 2012, 58: 227-235.
[39] TAYLOR R H, ROSE F, TOHER C, et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium[J]. Computational Materials Science, 2014, 93: 178-192.
[40] YANG X Y, WANG Z G, ZHAO X S, et al. MatCloud: a high-throughput computational infrastructure for integrated management of materials simulation, data and resources[J]. Computational Materials Science, 2018, 146: 319-333.
[41] 中国科学院物理研究所. Atomly材料科学数据库[DB]. https: //atomly.net//.
[42] PIZZI G, CEPELLOTTI A, SABATINI R, et al. AiiDA: automated interactive infrastructure and database for computational science[J]. Computational Materials Science, 2016, 111: 218-230.
[43] ONG S P, RICHARDS W D, JAIN A, et al. Python materials genomics(pymatgen): a robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013, 68: 314-319.
[44] FUJIMURA K, SEKO A, KOYAMA Y, et al. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms[J]. Advanced Energy Materials, 2013, 3(8): 980-985.
[45] SENDEK A D, YANG Q, CUBUK E D, et al. Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials[J]. Energy & Environmental Science, 2017, 10(1): 306-320.
[46] SENDEK A D, CUBUK E D, ANTONIUK E R, et al. Machine learning-assisted discovery of solid Li-ion conducting materials[J]. Chemistry of Materials, 2019, 31(2): 342-352.
[47] JALEM R, AOYAMA T, NAKAYAMA M, et al. Multivariate method-assisted a b initio study of olivine-type LiMXO4(main group M2+-X5+ and M3+-X4+)compositions as potential solid electrolytes[J]. Chemistry of Materials, 2012, 24(7): 1357-1364.
[48] JALEM R, NAKAYAMA M, KASUGA T. An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks[J]. Journal of Materials Chemistry A, 2014, 2(3): 720-734.
[49] JALEM R, KIMURA M, NAKAYAMA M, et al. Informatics-aided density functional theory study on the Li ion transport of tavorite-type LiMTO4F(M(3+)-T(5+), M(2+)-T(6+))[J]. Journal of Chemical Information and Modeling, 2015, 55(6): 1158-1168.
[50] KIREEVA N, PERVOV V S. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(31): 20904-20918.
[51] XU Y J, ZONG Y, HIPPALGAONKAR K. Machine learning-assisted cross-domain prediction of ionic conductivity in sodium and lithium-based superionic conductors using facile descriptors[J]. Journal of Physics Communications, 2020, 4(5): 055015.
[52] ZHANG Y, HE X F, CHEN Z Q, et al. Unsupervised discovery of solid-state lithium ion conductors[J]. Nature Communications, 2019, 10(1): 5260.
[53] ZHAO Q, AVDEEV M, CHEN L Q, et al. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based(HECS)descriptors[J]. Science Bulletin, 2021, 66(14): 1401-1408.
[54] ZHAO Q, ZHANG L W, HE B, et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality[J]. Energy Storage Materials, 2021, 40: 386-393.

备注/Memo

备注/Memo:
收稿日期: 2024-04-06。
基金项目: 国家自然科学基金资助项目(52203292)。
作者简介: 赵倩(1988—), 女, 山东菏泽人, 博士, 讲师。通信联系人: 任玉荣(1973—), E-mail: ryrchem@cczu.edu.cn
更新日期/Last Update: 1900-01-01