[1]张洪敏,江鹏,潘海军,等.高固溶Al-7Mg合金高温拉伸行为及本构方程研究[J].常州大学学报(自然科学版),2025,37(01):15-21.[doi:10.3969/j.issn.2095-0411.2025.01.002]
 ZHANG Hongmin,JIANG Peng,PAN Haijun,et al.Study on high-temperature tensile deformation behaviors and corresponding constitutive equation of a high solid solution Al-7Mg alloy[J].Journal of Changzhou University(Natural Science Edition),2025,37(01):15-21.[doi:10.3969/j.issn.2095-0411.2025.01.002]
点击复制

高固溶Al-7Mg合金高温拉伸行为及本构方程研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第37卷
期数:
2025年01期
页码:
15-21
栏目:
材料科学与工程
出版日期:
2025-01-22

文章信息/Info

Title:
Study on high-temperature tensile deformation behaviors and corresponding constitutive equation of a high solid solution Al-7Mg alloy
文章编号:
2095-0411(2025)01-0015-07
作者:
张洪敏江鹏潘海军闫恪涛王广原张彬
常州大学 机械与轨道交通学院, 江苏 常州 213164
Author(s):
ZHANG Hongmin JIANG Peng PAN Haijun YAN Ketao WANG Guangyuan ZHANG Bin
School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
关键词:
Al-Mg合金 高温拉伸性能 微观组织 本构方程
Keywords:
Al-Mg alloys high-temperature tensile property microstructure constitutive equation
分类号:
TG 1
DOI:
10.3969/j.issn.2095-0411.2025.01.002
文献标志码:
A
摘要:
光学显微镜(OM)及透射电子显微镜(TEM)研究发现热挤压制备的高固溶Al-7Mg合金由均匀粗晶粒组成,平均尺寸约为16 μm,基体中没有检测到第二相。通过设计不同变形参数的高温拉伸实验,探索了Al-7Mg合金高温拉伸变形行为。其中,断裂延伸率随温度的升高而提高。较粗的晶粒导致该合金在400 ℃拉伸时的断裂延伸率约为200%。应变速率敏感系数(0.16~0.31)及变形激活能(124 kJ/mol)计算结果表明随拉伸温度由200 ℃提高至400 ℃,Al-7Mg合金的变形机制由位错滑移/蠕变转变为溶质拖拽蠕变,该过程由晶格扩散控制。通过峰值应变处应力值的系统分析,构建了用于预测Al-7Mg合金高温拉伸峰值应力的本构方程。
Abstract:
Optical microscopy(OM)and transmission electron microscopy(TEM)results reveal that the Al-7Mg alloy prepared by hot extrusion exhibits a uniform coarse grain structure, with an average size of 16 μm. No second phases are detected. Through designing a series of high-temperature tensile experiments with different parameters, the deformation behavior of the Al-7Mg alloy is investigated. The elongation to failure is enhanced with increasing tensile temperature. The coarse grain structure gives rise to elongations to failure of 200% when deformed at 400 ℃. The calculated results of strain rate sensitivity(0.16~0.31)and deformation activation energy(124 kJ/mol)indicate that the dominant deformation mechanism of Al-7Mg alloy transforms from dislocation slip/creep to solute drag creep with increasing tensile temperature from 200 ℃ to 400 ℃, which is controlled by lattice diffusion. An Arrhenius-type constitutive model is constructed for predicting peak stress of Al-7Mg, based on systematically analyzing stress at the peak strain.

参考文献/References:

[1] SON K T, KASSNER M E, LEE T K, et al. Mg effect on the cryogenic temperature toughness of Al-Mg alloys[J]. Materials Design, 2022, 224: 111336.
[2] KOJU R K, MISHIN Y. Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys[J]. Acta Materialia, 2020, 201: 596-603.
[3] ZHA M, LI Y J, MATHIESEN R H, et al. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Materialia, 2015, 84: 42-54.
[4] BURANOVA Y,KULITSKIY V, PETERLECHNER M, et al. Al3(Sc, Zr)-based precipitates in Al-Mg alloy: effect of severe deformation[J]. Acta Materialia, 2017, 124: 210-224.
[5] SHEN Y F, GUAN R G, ZHAO Z Y, et al. Ultrafine-grained Al-0.2Sc-0.1Zr alloy: the mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion[J]. Acta Materialia, 2015, 100: 247-255.
[6] LEE B H, KIM S H, PARK J H, et al. Role of Mg in simultaneously improving the strength and ductility of Al-Mg alloys[J]. Materials Science and Engineering: A, 2016, 657: 115-122.
[7] YANG X H, WANG D G, WU Z G, et al. A coupled EBSD/TEM study of the microstructural evolution of multi-axial compressed pure Al and Al-Mg alloy[J]. Materials Science and Engineering: A, 2016, 658: 16-27.
[8] ZHA M, ZHANG H M, JIA H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy[J]. International Journal of Plasticity, 2021, 146: 103108.
[9] AZUSHIMA A, KOPP R, KORHONEN A, et al. Severe plastic deformation(SPD)processes for metals[J]. CIRP Annals-Manufacturing Technology, 2008, 57(2): 716-735.
[10] TANG Y P, GOTO W, HIROSAWA S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition[J]. Acta Materialia, 2017, 131: 57-64.
[11] VALIEV R Z, LANGDON T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51(7): 881-981.
[12] JOBBA M, MISHRA R K, NIEWCZAS M. Flow stress and work-hardening behaviour of Al-Mg binary alloys[J]. International Journal of Plasticity, 2015, 65: 43-60.
[13] MOGUCHEVA A, YUZBEKOVA D, BORISOVA Y. Alloying dependence of Portevin-Le Chatelier effect in Al-Mg alloys[J]. AIP Conference Proceedings, 2018, 2051(1): 020201.
[14] EBENBERGER P,UGGOWITZER P J, GEROLD B, et al. Effect of compositional and processing variations in new 5182-type AlMgMn alloys on mechanical properties and deformation surface quality[J]. Materials, 2019, 12(10): 1645.
[15] PANDEY A, KHAN A S, KIM E Y, et al. Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates[J]. International Journal of Plasticity, 2013, 41: 165-188.
[16] ZHONG H, ROMETSCH P A, ZHU Q Q, et al. Effect of pre-ageing on dynamic strain ageing in Al-Mg-Si alloys[J]. Materials Science and Engineering: A, 2017, 687: 323-331.
[17] HAN Y, QIAO G J, SUN J P, et al. A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models[J]. Computational Materials Science, 2013, 67: 93-103.
[18] MOSLEH A O, KOTOV A D, KISHCHIK A A, et al. Characterization of superplastic deformation behavior for a novel Al-Mg-Fe-Ni-Zr-Sc alloy: arrhenius-based modeling and artificial neural network approach[J]. Applied Sciences, 2021, 11(5): 2208.
[19] KOTOV A D, MOCHUGOVSKIY A G, MOSLEH A O, et al. Microstructure, superplasticity, and mechanical properties of Al-Mg-Er-Zr alloys[J]. Materials Characterization, 2022, 186: 111825.
[20] LEE S L, YEN C H, TZENG Y C, et al. Effects of CCEP and Sc on superplasticity of Al-5.6Mg-0.7Mn alloys[J]. Materials and Manufacturing Processes, 2018, 33(8): 867-872.
[21] AVTOKRATOVA E, SITDIKOV O, MARKUSHEV M, et al. Extraordinary high-strain rate superplasticity of severely deformed Al-Mg-Sc-Zr alloy[J]. Materials Science and Engineering: A, 2012, 538: 386-390.
[22] HSIAO I C, HUANG J C. Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy[J]. Metallurgical and Materials Transactions A, 2002, 33(5): 1373-1384.
[23] DU C F, GAO Y P, HUA Z M, et al. Enhanced superplasticity achieved by disclination-dislocation reactions in a fine-grained low-alloyed magnesium system[J]. International Journal of Plasticity, 2022, 154: 103300.

备注/Memo

备注/Memo:
收稿日期: 2024-06-14。
基金项目: 江苏省自然科学基金资助项目(BK20220629); 常州大学科学启动基金资助项目(ZMF22020096)。
作者简介: 张洪敏(1992—), 女, 黑龙江牡丹江人, 博士, 讲师。E-mail: zhanghongmin@cczu.edu.cn
更新日期/Last Update: 1900-01-01