参考文献/References:
[1] 伍利兵, 陈朝方, 林国生, 等. 红外热成像技术在安全检测领域的应用现状[J]. 品牌与标准化, 2021(4): 97-100.
[2] 李苗苗. 红外图像数字细节增强关键技术研究[D]. 南京: 南京邮电大学, 2019.
[3] 冷佳旭, 王佳, 莫梦竟成, 等. 基于深度学习的视频超分辨率重构进展综述[J]. 计算机科学, 2022, 49(2): 123-133.
[4] WOODCOCK J, BOCA P. ABZ2008 VSR-net workshop[C]//International Conference on Abstract State Machines. Heidelberg: Springer, 2008: 378-379.
[5] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016: 1874-1883.
[6] WANG X T, CHAN K C K, YU K, et al. EDVR: video restoration with enhanced deformable convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Long Beach: IEEE, 2019: 1954-1963.
[7] CHAN K C K, WANG X T, YU K, et al. BasicVSR: the search for essential components in video super-resolution and beyond[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021: 4945-4954.
[8] 吴昊月, 张惊雷, 赵俊亚. 基于导向型级联可形变卷积的电气设备红外图像检测[J]. 计算机应用与软件, 2023, 40(4): 204-210.
[9] 樊凌雁, 彭义辉, 王洪波.基于金字塔结构超分辨率网络的图像拼接方法: 202211547399.6[P]. 2022-12-05[2023-10-09].
[10] 薛培, 薛国新, 张亚洲, 等. 一种基于小波系数加权平均的Retinex图像增强算法[J]. 常州大学学报(自然科学版), 2010, 22(4): 39-42.
[11] NAH S, BAIK S, HONG S, et al. NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Long Beach: IEEE, 2019: 1996-2005.
[12] 郑德品, 沈海斌, 赵武峰. 一种抗模糊失真的结构相似度图像质量评价法[J]. 机电工程, 2007, 24(10): 82-84.