[1]易霞,张盟,王一龙,等.谷氨酰胺合成酶与运动发酵单胞菌耐受酚醛的关系[J].常州大学学报(自然科学版),2025,37(01):48-57.[doi:10.3969/j.issn.2095-0411.2025.01.006]
 YI Xia,ZHANG Meng,WANG Yilong,et al.Relationship between glutamine synthetase and the tolerance of phenolic aldehydes for Zymomonas mobilis[J].Journal of Changzhou University(Natural Science Edition),2025,37(01):48-57.[doi:10.3969/j.issn.2095-0411.2025.01.006]
点击复制

谷氨酰胺合成酶与运动发酵单胞菌耐受酚醛的关系()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第37卷
期数:
2025年01期
页码:
48-57
栏目:
生物医药工程
出版日期:
2025-01-22

文章信息/Info

Title:
Relationship between glutamine synthetase and the tolerance of phenolic aldehydes for Zymomonas mobilis
文章编号:
2095-0411(2025)01-0048-10
作者:
易霞123张盟123王一龙4蒙顾123王心悦123何玉财4朱劼1234
1.常州大学 城乡矿山研究院, 江苏 常州 213164; 2.生物质高效炼制及高质化利用国家地方联合工程研究中心(常州大学), 江苏 常州 213164; 3.常州市生物质绿色安全高值利用技术重点实验室(常州大学), 江苏 常州 213164; 4.常州大学 药学院, 江苏 常州 213164
Author(s):
YI Xia123 ZHANG Meng123 WANG Yilong4 MENG Gu123 WANG Xinyue123 HE Yucai4 ZHU Jie1234
1.Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; 2.National-local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, China; 3.Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou 213164, China; 4.School of Pharmacy, Changzhou University, Changzhou 213164, China
关键词:
运动发酵单胞菌 乙醇发酵 酚醛 谷氨酰胺合成酶
Keywords:
Zymomonas mobilis ZM4 ethanol fermentation phenolic aldehydes glutamine synthetase
分类号:
Q 81
DOI:
10.3969/j.issn.2095-0411.2025.01.006
文献标志码:
A
摘要:
通过基因表达谱、基因重组和生物信息学技术,研究谷氨酰胺合成酶与生物炼制菌株耐受酚醛的关系。基因表达谱研究结果表明,在4-羟基苯甲醛、丁香醛和香草醛的胁迫下,运动发酵单胞菌(Zymomonas mobilis ZM4)的I型谷氨酰胺合成酶基因 ZMO0493分别显著差异上调2.80,2.52和3.21倍。通过基因重组发现,ZMO0493过量表达提高了运动发酵单胞菌的酚醛转化和乙醇积累。蛋白互作网络分析发现,ZMO0493蛋白与氧化还原酶(ZMO1116/ZMO1661)和氨基转移酶(ZMO0056/ZMO1207)显著相关,表明该I型谷氨酰胺合成酶与运动发酵单胞菌的酚醛耐受有关。
Abstract:
It aimed to study the effect of synthetase on the tolerance of phenolic aldehydes for fermentation strains in biorefinery fields through gene expression profiling, gene recombination and bioinformatics analysis. It showed that the gene ZMO0493 encoding type I glutamine synthetase for Zymomonas mobilis ZM4 was significantly up-regulated by 2.80, 2.52 and 3.21 fold change under the stress of 4-hydroxybenzaldehyde, syringaldehyde and vanillin, respectively, through gene expression profiling assays. It was also confirmed that the over-expression of ZMO0493 increased phenolic aldehyde conversion and ethanol accumulation through gene recombination technique. Protein interaction network analysis for Z.mobilis further illustrated that the protein ZMO0493 was of significant connection with the oxidoreductases(ZMO1116/ZMO1661)and acyltransferases(ZMO0056/ZMO1207). Therefore, type I glutamine synthetase was involved with the tolerance of phenolic aldehydes for Z.mobilis.

参考文献/References:

[1] NARRON R H, KIM H, CHANG H M, et al. Biomass pretreatments capable of enabling lignin valorization in a biorefinery process[J]. Current Opinion in Biotechnology, 2016, 38: 39-46.
[2] CANTERO D, JARA R, NAVARRETE A, et al. Pretreatment processes of biomass for biorefineries: current status and prospects[J]. Annual Review of Chemical and Biomolecular Engineering, 2019, 10: 289-310.
[3] 徐忠, 宁艳春, 严生虎, 等. 磷酸钠组合氧气预处理提高玉米秸秆酶解糖化效率[J]. 常州大学学报(自然科学版), 2021, 33(3): 65-74.
[4] HE J L, LIU X Y, XIA J, et al. One-step utilization of non-detoxified pretreated lignocellulose for enhanced cellulolytic enzyme production using recombinant Trichoderma reesei RUT C30 carrying alcohol dehydrogenase and nicotinate phosphoribosyltransferase[J]. Bioresource Technology, 2020, 310: 123458.
[5] LI Y, QI B K, WAN Y H. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass[J]. Bioresource Technology, 2014, 167: 324-330.
[6] FRANDEN M A, PILATH H M, MOHAGHEGHI A, et al. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates[J]. Biotechnology for Biofuels, 2013, 6(1): 99-105.
[7] DU J, LIANG J R, ZHANG X J, et al. Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover[J]. Bioresource Technology, 2022, 343: 126113.
[8] ZHENG D Q, JIN X N, ZHANG K, et al. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains[J]. Bioresource Technology, 2017, 231: 53-58.
[9] HACSALIHOGˇLU B, HOLYAVKIN C, TOPALOGˇLU A, et al. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering[J]. FEMS Yeast Research, 2019, 19(3): 21-27.
[10] YAN Z, ZHANG J, BAO J. Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution[J]. Bioresource Technology, 2021, 329: 124926.
[11] LIU H H, ZHANG J, YUAN J, et al. Gene coexpression network analysis reveals a novel metabolic mechanism of Clostridium acetobutylicum responding to phenolic inhibitors from lignocellulosic hydrolysates[J]. Biotechnology for Biofuels, 2020, 13: 163-169.
[12] YI X, GU H Q, GAO Q Q, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J]. Biotechnology for Biofuels, 2015, 8: 153-157.
[13] LIANG Z Z, WANG X N, BAO X M, et al. Newly identified genes contribute to vanillin tolerance in Saccharomyces cerevisiae[J]. Microbial Biotechnology, 2021, 14(2): 503-516.
[14] CAO W Y, ZHAO W Q, YANG B L, et al. Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2021, 20(1): 142.
[15] ZHAO W Q, WANG X N, YANG B L, et al. Unravel the regulatory mechanism of YRR1p phosphorylation in response to vanillin stress in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2023, 22(1): 48.
[16] XIA J, YANG Y F, LIU C G, et al. Engineering Zymomonas mobilis for robust cellulosic ethanol production[J]. Trends in Biotechnology, 2019, 37(9): 960-972.
[17] YANG S H, FEI Q, ZHANG Y P, et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals[J]. Microbial Biotechnology, 2016, 9(6): 699-717.
[18] GU H Q, ZHANG J, BAO J. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue[J]. Biotechnology and Bioengineering, 2015, 112(9): 1770-1782.
[19] YANG S H, PELLETIER D A, LU T Y S, et al. The Zymomonas mobilis regulator contributes to tolerance against multiple lignocellulosic pretreatment inhibitors[J]. BMC Microbiology, 2010, 10: 135-141.
[20] YI X, GAO Q Q, BAO J. Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability[J]. Journal of Biotechnology, 2019, 303: 1-7.
[21] YI X, MEI J, LIN L, et al. Overexpression of dioxygenase encoding gene accelerates the phenolic aldehyde conversion and ethanol fermentability of Zymomonas mobilis[J]. Applied Biochemistry and Biotechnology, 2021, 193(9): 3017-3027.
[22] YI X, WU J F, JIANG H, et al. Kinase expression enhances phenolic aldehydes conversion and ethanol fermentability of Zymomonas mobilis[J]. Bioprocess and Biosystems Engineering, 2022, 45(8): 1319-1329.
[23] WANG S, LIN R X, TUMUKUNDE E, et al. Glutamine synthetase contributes to the regulation of growth, conidiation, sclerotia development, and resistance to oxidative stress in the fungus Aspergillus flavus[J]. Toxins, 2022, 14(12): 822-829.
[24] LI X, WANG S D, ZHANG M Z, et al. Glutamine synthetase(GS)deficiency can affect ammonia tolerance of yellow catfish Pelteobagrus fulvidraco[J]. Fish & Shellfish Immunology, 2022, 126: 104-112.
[25] LEE H J, ABDULA S E, JANG D W, et al. Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress[J]. Plant Cell Reports, 2013, 32(10): 1521-1529.
[26] NAGY Z, NÉMETH E, GUÓTH A, et al. Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase isoenzymes and rubisco[J]. Plant Physiology and Biochemistry, 2013, 67: 48-54.
[27] DONG H W, BAO J, RYU D D Y, et al. Design and construction of improved new vectors for Zymomonas mobilis recombinants[J]. Biotechnology and Bioengineering, 2011, 108(7): 1616-1627.
[28] DONG H W, FAN L Q, LUO Z C, et al. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis(pHW20a-fdh)[J]. Biotechnology and Bioengineering, 2013, 110(9): 2395-2404.
[29] GONG C J, YOU X H, ZHANG S Y, et al. Functional analysis of a glutamine biosynthesis protein from a psychrotrophic bacterium, Cryobacterium soli GCJ02[J]. Indian Journal of Microbiology, 2020, 60(2): 153-159.
[30] ZHANG Y, LI B Z, LUO P, et al. Glutamine synthetase plays an important role in ammonium tolerance of Myriophyllum aquaticum[J]. The Science of the Total Environment, 2022, 848: 157596.
[31] KICHEY T, LE GOUIS J, SANGWAN B, et al. Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat[J]. Plant and Cell Physiology, 2005, 46(6): 964-974.
[32] TRAVISB A, PECK J V, SALINAS R, et al. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in gram-positive bacteria[J]. Nature Communications, 2022, 13(1): 3793-3799.
[33] CUI G X, MI J N, MORET A, et al. A carbon-nitrogen negative feedback loop underlies the repeated evolution of cnidarian-symbiodiniaceae symbioses[J]. Nature Communications, 2023, 14(1): 6949-6955.
[34] HACHIYA T, INABA J, WAKAZAKI M, et al. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana[J].Nature Communications, 2021, 12(1): 4944-4951.
[35] TAKANO H K, BEFFA R, PRESTON C, et al. A novel insight into the mode of action of glufosinate:how reactive oxygen species are formed[J]. Photosynthesis Research, 2020, 144(3): 361-372.
[36] GAO Y J, DE BANG T C, SCHJOERRING J K. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2[J]. Plant Biotechnology Journal, 2019, 17(7): 1209-1221.
[37] MARGELIS S, D'SOUZA C, SMALL A J, et al. Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans[J]. Journal of Bacteriology, 2001, 183(20): 5826-5833.
[38] SASAKI Y, KOJIMA A, SHIBATA Y, et al. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe[J]. PLoS One, 2017, 12(10): e0186028.
[39] TEICHERT S, SCHÖNIG B, RICHTER S, et al. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism[J]. Molecular Microbiology, 2004, 53(6): 1661-1675.

备注/Memo

备注/Memo:
收稿日期: 2024-05-25。
基金项目: 国家自然科学基金资助项目(22278040, 21978072); 常州大学科研启动基金资助项目(ZMF22020021)。
作者简介: 易霞(1979—), 女, 新疆奇台人, 博士, 副教授。E-mail: yixia0110@163.com
更新日期/Last Update: 1900-01-01