[1]尹 康,段锁林,邹 凌.基于改进SIFT特征和粒子滤波的目标识别仿真研究[J].常州大学学报(自然科学版),2012,(02):64-68.
 YIN Kang,DUAN Suo-lin,ZOU Ling.Research on the Object Recognition Based on Improved SIFT Feature and Particle Filter[J].Journal of Changzhou University(Natural Science Edition),2012,(02):64-68.
点击复制

基于改进SIFT特征和粒子滤波的目标识别仿真研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2012年02期
页码:
64-68
栏目:
计算机与信息工程
出版日期:
2012-03-30

文章信息/Info

Title:
Research on the Object Recognition Based on Improved SIFT Feature and Particle Filter
作者:
尹 康 段锁林邹 凌
常州大学 机器人研究所,江苏 常州 213164
Author(s):
YIN Kang DUAN Suo-lin ZOU Ling
Institute of Robotics, Changzhou University, Changzhou 213164, China
关键词:
SIFT算法 特征提取 关键点匹配 粒子滤波 目标识别
Keywords:
SIFT algorithm feature extraction key point matching particle filter object recognition
分类号:
TP 242.6
文献标志码:
A
摘要:
针对在目标识别中原始SIFT(尺度不变特征转换)特征算法计算量大,特征点匹配耗时长等缺陷,采用一种改进的SIFT特征算法。在原始的SIFT算法基础上简化了特征描述符,以及对匹配算法进行了改进,考虑到识别过程中目标物体的特征点会发生变化,因此结合粒子滤波来实现对目标物体的识别。仿真结果表明:该方法继承了原始SIFT算法的优点,有效地避免了一些干扰,减小了计算量,在结合粒子滤波算法后能够有效地更新特征点的匹配,最终实现了对目标物体准确的识别。
Abstract:
For the problems of much calculation and consuming more time in the original SIFT feature algorithm, a kind of improved SIFT feature algorithm is used. Based on the original SIFT feature algorithm, the feature descriptor is simplified and the matching algorithm is improved. Considering the changing of feature descriptors in object recognition, the particle filter algorithm is combined with the target object recognition. Simulation result shows that this algorithm retains the advantages of original SIFT features algorithm, some disturbances are avoided and calculated amount is decreased.In combination with the particle filter algorithm it can effectively update feature point matching. The objects can be recognized reliably by using the combination algorithm.

参考文献/References:

[1] 赵芹,周涛,舒勤. 基于特征点的图像配准技术探讨[J]. 红外技术,2006,28(6):327-330.
[2]李冬梅,王延杰. 一种基于特征点匹配的图像拼接技术[J]. 微计算机信息,2008,24(5):296-298.
[3]D G Lowe. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2): 90-110.
[4]秦雪,侯进. 一种改进的SIFT-PCA算法在图像检索中的应用[J]. 西南科技大学学报,2011,26(4):66-70.
[5]杨秋菊,肖雪梅. 基于改进Canny特征点的SIFT算法[J]. 计算机工程与设计,2011,32(7):2428-2431.
[6]王雷光,郑晨,代沁伶. 基于均值漂移聚类的油罐识别[J]. 电脑知识与技术,2011,7(17):4155-4157.
[7]孙林,吴相林,周莉,等. 对扭转鲁棒的SIFT图像匹配在商标识别中的应用[J]. 计算机工程与设计,2011,32(4): 1406-1410.
[8]张书真,宋海龙,向晓燕,等. 采用快速SIFT算法实现目标识别[J].计算机系统应用,2010,19(6):83-85.
[9]王法胜,赵清杰. 一种用于解决非线性滤波问题的新型粒子滤波算法[J].计算机学报,2008,31(2):346-352.

相似文献/References:

[1]庄玮,段锁林,徐亭婷,等.基于SVM的4类运动想象的脑电信号分类方法[J].常州大学学报(自然科学版),2014,(01):42.[doi:10.3969/j.issn.2095-0411.2014.01.010]
 ZHUANG Wei,DUAN Suo-lin,XU Ting-ting.Research on Classification Method Based on SVM for the FourClass Motor Imagery EEG[J].Journal of Changzhou University(Natural Science Edition),2014,(02):42.[doi:10.3969/j.issn.2095-0411.2014.01.010]
[2]刘 成,何可人,周天彤,等.左右手运动想象脑电模式识别研究[J].常州大学学报(自然科学版),2013,(01):25.[doi:10.3969/j.issn.2095-0411.2013.01.005]
 LIU Cheng,HE Ke-ren,ZHOU Tian-tong,et al.Study of Discrimination between Left and Right Hand Movements Imagery Event-Related EEG Pattern[J].Journal of Changzhou University(Natural Science Edition),2013,(02):25.[doi:10.3969/j.issn.2095-0411.2013.01.005]
[3]王新颖,张惠然,黄旭安,等.深度信念网络在管道故障诊断中的应用[J].常州大学学报(自然科学版),2020,32(03):71.[doi:10.3969/j.issn.2095-0411.2020.03.010]
 WANG Xinying,ZHANG Huiran,HUANG Xu'an,et al.Application Research of Deep Belief Network in Pipeline Fault Identification[J].Journal of Changzhou University(Natural Science Edition),2020,32(02):71.[doi:10.3969/j.issn.2095-0411.2020.03.010]
[4]吴鹏,陈信华,马宇超,等.基于优化深度学习的电动桥铸件表面瑕疵识别方法[J].常州大学学报(自然科学版),2022,34(05):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]
 WU Peng,CHEN Xinhua,MA Yuchao,et al.Research on Casting Surface Defects of Electric Bridge Identification Method Based on Optimal Deep Learning[J].Journal of Changzhou University(Natural Science Edition),2022,34(02):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]

备注/Memo

备注/Memo:
基金项目:常州市科技计划项目资助(CJ20110023) 作者简介:尹康(1988—),男,江苏苏州人,硕士生; 通讯联系人:段锁林。
更新日期/Last Update: 2012-03-30