[1]冯琳琳,张兆志,王新颖,等.取代芳烃对发光菌急性毒性的QSAR研究[J].常州大学学报(自然科学版),2012,(04):8-12.
 FENG Lin-lin,ZHANG Zhao-zhi,WANG Xin-ying,et al.QSAR Study on Acute Toxicity of Substituted Aromatic Compounds to Photobacterium Phosphoreum[J].Journal of Changzhou University(Natural Science Edition),2012,(04):8-12.
点击复制

取代芳烃对发光菌急性毒性的QSAR研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2012年04期
页码:
8-12
栏目:
环境科学与工程
出版日期:
2012-09-30

文章信息/Info

Title:
QSAR Study on Acute Toxicity of Substituted Aromatic Compounds to Photobacterium Phosphoreum
作者:
冯琳琳1张兆志2王新颖1陈海群1
1.常州大学 环境与安全工程学院,江苏 常州 213164; 2.衡水学院应用化学系,河北 衡水 053000
Author(s):
FENG Lin-lin1 ZHANG Zhao-zhi2 WANG Xin-ying1 CHEN Hai-qun1
1.School of Environmental and Safety Engineering,Changzhou University,Changzhou213164,China; 2.Department of Applied Chemistry, Hengshui University,Hengshui 053000,China
关键词:
定量结构-活性相关 取代芳烃 遗传算法 支持向量机 急性毒性
Keywords:
substituted aromatic compounds genetic algorithm support vector machine acute toxicity
分类号:
X 131
文献标志码:
A
摘要:
根据定量结构-活性相关性(QSAR)原理,研究了38种取代芳烃对发光菌的急性毒性(Ce,50)与其分子结构之间的构效关系。应用遗传算法筛选出5个与Ce,50最为相关的描述符,并应用多元线性回归方法和支持向量机方法建立QSAR模型。两种模型的复相关系数、留一法交互验证系数分别为0.988、0.979和0.991、0.981,对外部预测样本的复相关系数和外部测试集交互验证系数分别为0.913、0.904和0.924、0.906,与相关文献比较,所建QSAR模型均具有更好的预测能力和稳健性。
Abstract:
This QSAR study relates to the structure of 38 sorts of substituted aromatic compounds, in which a set of five descriptors were chosen byusing the variable selection method of genetic algorithm. The five descriptorswere used to establish the QSAR of the acute toxicity of substituted aromatic compounds to photobacterium phosphoreum by multiple linear regression and support vector machine. The statistical results indicate that the multiple correlation coefficient and cross validation using leave-one-out were 0.988,0.979 and 0.991,0.981, respectively. To validate the predictive power of theresulting models, external validation multiple correlation coefficient and cross validation were 0.913, 0.904 and 0.924, 0.906, respectively. Compared withpertinent literature, the QSAR models have more favorable estimation stabilityand better prediction power.

参考文献/References:

[1]Nimrod A C, Benson W H. Environmental estrogenic effects of alkylphenol ethoxylates[J]. Criticol Reviews in Toxicology, 1996,2(3):335-364.
[2]Cronin M T D, Schultz T W. Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to tetrahymena pyriformis: comparative assessment of the methodologies[J]. Chemical Research in Toxicology,2001,14(9):1284-1295.
[3]Wang X D,Dong Y Y, Wang L S, et al. Acute toxicity of substituted phenols to rana japonica tadpoles and mechanism-based quantitative structure-activityrelationship(QSAR)study[J]. Chemosphere, 2001,44(3):447-455.
[4]Malakhat A Turabekova, Bakhtiyor F Rasulev, Mikhail G Levkovich, et al.Aconitum and delphinium sp. Alkaloids as antagonist modulators of voltage-gated Na+ channels AM1/DFT electronic structure investigations and QSAR studies[J]. Computational Biology and Chemistry, 2008,32(2):88-101.
[5]Zhu Menjun,Ge Fei,Zhu Runliang,et al. A DFT-based QSAR study of the toxicity of quanternary ammonium compounds on chlorella vulgaris[J]. Chemosphere,2010,80(1):46-52.
[6]Aziz Habibi-Yangjeh·Mohammad Danandeh-Jenagharad. Application of a geneticalgorithm and an artificial neural network for global prediction of the toxicity of phenols to tetrahymena pyriformis[J]. Monatsh Chem,2009,140(11):1279-1288.
[7]刘天宝, 彭艳芬, 汪新.DFT法研究取代酚对黑头呆鱼的急毒性[J].计算机与应用化学, 2012,29(2):175-177.
[8]Zhu M J, Ge F, Zhu R L, et al. A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on chlorella vulgaris[J].Chemosphere, 2010, 80(1):46-52.
[9]Qin Y, Deng H F, Yan H, et al. An accurate nonlinear QSAR model for the antitumor activities of chloroethylnitrosoureas using neural networks[J]. Journalof Molecualr Graphics and Modelling, 2011, 29(6):826-833.
[10]崔秀君, 王志欣, 袁星,等.支持向量机用于酚类化合物毒性的QSAR研究[J].计算机与应用化学, 2008, 25(3): 298-302.
[11]崔毅,蒋军成,潘勇,等.基于支持向量机的脂肪族化合物急性毒性的QSAR研究[J].安全与环境学报,2009,9(5):19-24.
[12]Hemmateenejad B, Mehdipour A R, Miri R,et al. Comparative QSAR studies ontoxicity of phenol derivatives using quantum topological molecular similarity indices[J]. Chemical Biology & Drug Design,2010,75(5):521-531.
[13]刘付喜,钱苏翔,曹坚.基于遗传算法的BP神经网络在声音智能监控中的应用[J].常州大学学报:自然科学版,2012,24(3):70-74.
[14]崔毅, 蒋军成, 潘勇,等.羧酸以其衍生物急性毒性的QSAR研究[J].环境科学与技术, 2010, 33(4): 29-34.
[15]张克俊, 孙守迁, 柴春雷,等.基于启发式算法和支持向量机算法预测醛类化合物急性毒性[J].分析化学研究报告,2007,35(9):1263-1268.
[16]Zhao C Y, Zhang H X, Zhang X Y, et al. Application of support vector machine(SVM)for prediction toxic activity of different data sets[J]. Toxicology,2006, 217(2-3):105-119.
[17]顾云兰, 陶建清, 费正皓,等.DFT法研究取代芳烃结构与毒性的定量关系[J].计算机与应用化学, 2009, 26(10): 1303-1306.
[18]蒋军成, 潘勇.有机化合物的分子结构与危险特性[M].北京:科学出版社,2011:159-160.
[19]Tropsha A, Gramatica P, Gmobar V K. The importance of being earnest: validation is the absolute essential for successful application and interpretation ofQSAR models[J]. QSAR & Combinatorial Science, 2003, 22(1): 69-77.

备注/Memo

备注/Memo:
作者简介:冯琳琳(1984-),女,江苏邳州人,硕士生; 通讯联系人:陈海群。
更新日期/Last Update: 2012-09-30