[1]刘 成,何可人,周天彤,等.左右手运动想象脑电模式识别研究[J].常州大学学报(自然科学版),2013,(01):25-30.[doi:10.3969/j.issn.2095-0411.2013.01.005]
 LIU Cheng,HE Ke-ren,ZHOU Tian-tong,et al.Study of Discrimination between Left and Right Hand Movements Imagery Event-Related EEG Pattern[J].Journal of Changzhou University(Natural Science Edition),2013,(01):25-30.[doi:10.3969/j.issn.2095-0411.2013.01.005]
点击复制

左右手运动想象脑电模式识别研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2013年01期
页码:
25-30
栏目:
生物医学工程
出版日期:
2013-01-01

文章信息/Info

Title:
Study of Discrimination between Left and Right Hand Movements Imagery Event-Related EEG Pattern
作者:
刘 成1 何可人12周天彤12邹 凌12
1.常州大学 信息科学与工程学院,江苏 常州 213164; 2.常州市生物医学信息技术重点实验室,江苏 常州 213164
Author(s):
LIU Cheng1HE Ke-ren12ZHOU Tian-tong12ZOU Ling12
1.School of Information Science and Engineering, Changzhou University, Changzhou 213164, China; 2.Changzhou Key Laboratory of Biomedical Information Technology,Changzhou 213164, China
关键词:
脑机接口 特征提取 模式识别 运动想象
Keywords:
brain-computer interface feature extraction motor imagery pattern classification
分类号:
TK 229.8
DOI:
10.3969/j.issn.2095-0411.2013.01.005
文献标志码:
A
摘要:
如何提高左右手运动想象脑电信号的分类率是脑机接口研究领域的一个热点话题。基于美国EGI64导脑电采集系统得到3名健康被试的脑电数据,首先,采用独立成分分析(Independent Component Analysis, ICA)对采集的数据进行去噪处理; 然后,利用离散小波变换方法对分解C3/C4处的EEG 平均功率信号,选用尺度6上逼近系数A6的重构信号作为脑电特征信号; 最后,用Fisher 线性判别分析法(Fisher Linear Discriminant Analysis, FLDA)、支持向量机方法(Support Vector Machines, SVM)和极限学习机分类方法(Extreme Learning Machine, ELM)分别对特征信号进行分类。分类结果表明:极限学习机分类方法得出的平均分类率要高于Fisher方法与SVM方法的平均分类率,可以达到92%,而且运行速度也高于另两种分类算法。
Abstract:
Recently, accurate classification of imaginary left and right hand movemetns of EEG is an important issue in brain0computer interface(BCI). Based on EEG data of 3 subjects which collected by -American EGI 640-channel EEG colletion system, firstly, the effective de-noising processing to collected data by the independent component analysis method is carried out. Secondly, discrete wavelet transform method is used to decompose the average power of the channel C3/C4 in left and right hand movements imagery. The reconstructed signal of approximation coefficient A6 on the sixth level is selected to build up feature signal. Finally, to classify the feature signal respectively by Fisher Linear Discriminant Analysis(FLDA), Support Vector Machines(SVM)and Extreme Learning Machine(ELM)methods. The classification results show that the average classification rate of -ELM is higher than that of FLDA and SVM, which can achieve 92%. The running speed of ELM is also faster than the other two methods.

参考文献/References:

[1] 李明爱,刘净瑜,郝冬梅. 基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报, 2009,28(2):161-165.
[2] 叶竟, 石锐, 何庆华. 基于HHT和改进CSP算法的运动想象BCI系统[J].重庆理工大学学报, 2012, 26(5):70-73.
[3] 谢松云, 张振中, 张伟平,等. 基于ICA的脑电信号去噪方法研究与应用[J].中国医学影像技术,2007,23(10):1562-1565.
[4] 孔薇, 杨杰, 周越,等. 基于独立成分分析的强背景噪声去噪方法[J].上海交通大学学报,2004,38(12):1957-1961.
[5] 王巧兰, 季忠, 秦树人,等.基于小波变换的脑电噪声消除方法[J].重庆大学学报, 2005,28(7):15-26.
[6] Yannis Kopsinis,Stephen McLaughlin.Development of EMD—based denoising methods inspired by wavelet thresholding[J].IEEE Trunsactiom on Signal Processing,2009,57(4):1351-1361.
[7] Fraiwan L, Lweesy K, Khasawneh N. “Classification of sleep stages using multi-wavelet time frequency entropy and LDA”[J].Methods Inf Med, 2010,49(3):230-237.
[8] 袁玲,杨帮华,马世伟. 基于HHT和SVM的运动想象脑电识别[J].仪器仪表学报, 2010,31(3):649-654.
[9] Zou Ling, Wang Xinguang, Shi Guodong, et al. EEG feature extraction and pattern classification based on motor imagery in brain-computer interface[J]. International Journal of Software Science and Computational Intelligence,2011,3(3):43-56.
[10] Lou Bin, Hong Bo, Gao Xiaorong,et al. Bipolar electrode selection for a motor imagery based brain–computer interface[J]. J Neural Eng,2008(5): 342–349.
[11] 曾祥炎,陈军.E-Prime实验设计技术[M].广州:暨南大学出版社,2009:25-216.
[12] 徐宝国, 宋爱国, 费树岷,等. 在线脑机接口中脑电信号的特征提取与分类方法[J].电子学报,2011,39(5):1025-1030.
[13] 邹凌,陈树越,孙玉强,等.小波分析和独立分量分析结合的诱发电位信号提取研究[J].生物医学工程学杂志,2010(4):741-745.
[14] 陈盛双. 基于极限学习机的XML文档分类[J]. 计算机工程,2011,37(19):177-179.

相似文献/References:

[1]尹 康,段锁林,邹 凌.基于改进SIFT特征和粒子滤波的目标识别仿真研究[J].常州大学学报(自然科学版),2012,(02):64.
 YIN Kang,DUAN Suo-lin,ZOU Ling.Research on the Object Recognition Based on Improved SIFT Feature and Particle Filter[J].Journal of Changzhou University(Natural Science Edition),2012,(01):64.
[2]王新颖,张惠然,黄旭安,等.深度信念网络在管道故障诊断中的应用[J].常州大学学报(自然科学版),2020,32(03):71.[doi:10.3969/j.issn.2095-0411.2020.03.010]
 WANG Xinying,ZHANG Huiran,HUANG Xu'an,et al.Application Research of Deep Belief Network in Pipeline Fault Identification[J].Journal of Changzhou University(Natural Science Edition),2020,32(01):71.[doi:10.3969/j.issn.2095-0411.2020.03.010]
[3]吴鹏,陈信华,马宇超,等.基于优化深度学习的电动桥铸件表面瑕疵识别方法[J].常州大学学报(自然科学版),2022,34(05):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]
 WU Peng,CHEN Xinhua,MA Yuchao,et al.Research on Casting Surface Defects of Electric Bridge Identification Method Based on Optimal Deep Learning[J].Journal of Changzhou University(Natural Science Edition),2022,34(01):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]
[4]庄玮,段锁林,徐亭婷,等.基于SVM的4类运动想象的脑电信号分类方法[J].常州大学学报(自然科学版),2014,(01):42.[doi:10.3969/j.issn.2095-0411.2014.01.010]
 ZHUANG Wei,DUAN Suo-lin,XU Ting-ting.Research on Classification Method Based on SVM for the FourClass Motor Imagery EEG[J].Journal of Changzhou University(Natural Science Edition),2014,(01):42.[doi:10.3969/j.issn.2095-0411.2014.01.010]

备注/Memo

备注/Memo:
基金项目:国家自然基金项目(61201096); 常州市科技项目(CJ20110023, CM20123006) 作者简介:刘成(1987—),男,安徽安庆人,硕士生; 通讯联系人:邹凌。
更新日期/Last Update: 2013-01-01