参考文献/References:
[1] 李明爱,刘净瑜,郝冬梅. 基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报, 2009,28(2):161-165.
[2] 叶竟, 石锐, 何庆华. 基于HHT和改进CSP算法的运动想象BCI系统[J].重庆理工大学学报, 2012, 26(5):70-73.
[3] 谢松云, 张振中, 张伟平,等. 基于ICA的脑电信号去噪方法研究与应用[J].中国医学影像技术,2007,23(10):1562-1565.
[4] 孔薇, 杨杰, 周越,等. 基于独立成分分析的强背景噪声去噪方法[J].上海交通大学学报,2004,38(12):1957-1961.
[5] 王巧兰, 季忠, 秦树人,等.基于小波变换的脑电噪声消除方法[J].重庆大学学报, 2005,28(7):15-26.
[6] Yannis Kopsinis,Stephen McLaughlin.Development of EMD—based denoising methods inspired by wavelet thresholding[J].IEEE Trunsactiom on Signal Processing,2009,57(4):1351-1361.
[7] Fraiwan L, Lweesy K, Khasawneh N. “Classification of sleep stages using multi-wavelet time frequency entropy and LDA”[J].Methods Inf Med, 2010,49(3):230-237.
[8] 袁玲,杨帮华,马世伟. 基于HHT和SVM的运动想象脑电识别[J].仪器仪表学报, 2010,31(3):649-654.
[9] Zou Ling, Wang Xinguang, Shi Guodong, et al. EEG feature extraction and pattern classification based on motor imagery in brain-computer interface[J]. International Journal of Software Science and Computational Intelligence,2011,3(3):43-56.
[10] Lou Bin, Hong Bo, Gao Xiaorong,et al. Bipolar electrode selection for a motor imagery based brain–computer interface[J]. J Neural Eng,2008(5): 342–349.
[11] 曾祥炎,陈军.E-Prime实验设计技术[M].广州:暨南大学出版社,2009:25-216.
[12] 徐宝国, 宋爱国, 费树岷,等. 在线脑机接口中脑电信号的特征提取与分类方法[J].电子学报,2011,39(5):1025-1030.
[13] 邹凌,陈树越,孙玉强,等.小波分析和独立分量分析结合的诱发电位信号提取研究[J].生物医学工程学杂志,2010(4):741-745.
[14] 陈盛双. 基于极限学习机的XML文档分类[J]. 计算机工程,2011,37(19):177-179.
相似文献/References:
[1]尹 康,段锁林,邹 凌.基于改进SIFT特征和粒子滤波的目标识别仿真研究[J].常州大学学报(自然科学版),2012,(02):64.
YIN Kang,DUAN Suo-lin,ZOU Ling.Research on the Object Recognition Based on Improved
SIFT Feature and Particle Filter[J].Journal of Changzhou University(Natural Science Edition),2012,(01):64.
[2]王新颖,张惠然,黄旭安,等.深度信念网络在管道故障诊断中的应用[J].常州大学学报(自然科学版),2020,32(03):71.[doi:10.3969/j.issn.2095-0411.2020.03.010]
WANG Xinying,ZHANG Huiran,HUANG Xu'an,et al.Application Research of Deep Belief Network in
Pipeline Fault Identification[J].Journal of Changzhou University(Natural Science Edition),2020,32(01):71.[doi:10.3969/j.issn.2095-0411.2020.03.010]
[3]吴鹏,陈信华,马宇超,等.基于优化深度学习的电动桥铸件表面瑕疵识别方法[J].常州大学学报(自然科学版),2022,34(05):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]
WU Peng,CHEN Xinhua,MA Yuchao,et al.Research on Casting Surface Defects of Electric Bridge Identification Method Based on Optimal Deep Learning[J].Journal of Changzhou University(Natural Science Edition),2022,34(01):65.[doi:10.3969/j.issn.2095-0411.2022.05.009]
[4]庄玮,段锁林,徐亭婷,等.基于SVM的4类运动想象的脑电信号分类方法[J].常州大学学报(自然科学版),2014,(01):42.[doi:10.3969/j.issn.2095-0411.2014.01.010]
ZHUANG Wei,DUAN Suo-lin,XU Ting-ting.Research on Classification Method Based on SVM for the
FourClass Motor Imagery EEG[J].Journal of Changzhou University(Natural Science Edition),2014,(01):42.[doi:10.3969/j.issn.2095-0411.2014.01.010]