[1]陈玉明,谢斐星,吴克寿,等.基于邻域关系的网络入侵检测特征选择[J].常州大学学报(自然科学版),2014,(03):1-5.[doi:10.3969/j.issn.2095-0411.2014.03.001]
 CHEN Yu-ming,XIE Fei-xing,WU Ke-shou,et al.Feature Selection of Intrusion Detection Based on Neighborhood Relation[J].Journal of Changzhou University(Natural Science Edition),2014,(03):1-5.[doi:10.3969/j.issn.2095-0411.2014.03.001]
点击复制

基于邻域关系的网络入侵检测特征选择()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2014年03期
页码:
1-5
栏目:
计算机与信息工程
出版日期:
2014-06-30

文章信息/Info

Title:
Feature Selection of Intrusion Detection Based on Neighborhood Relation
作者:
陈玉明谢斐星吴克寿唐朝辉
厦门理工学院 计算机科学与技术系,福建 厦门 361024
Author(s):
CHEN Yu-ming XIE Fei-xing WU Ke-shou TANG Chao-hui
Department of Computer Science and Technology,Xiamen University of Technology, Xiamen 361024,China
关键词:
粗糙集 邻域关系 入侵检测 特征选择
Keywords:
rough sets neighborhood relation intrusion detection feature selection
分类号:
TP 309
DOI:
10.3969/j.issn.2095-0411.2014.03.001
文献标志码:
A
摘要:
入侵检测数据集具有数据量大、特征数众多、连续型数据的特点。粗糙集是一种有效处理不确定性、不一致性、海量数据的有效分类工具,其特点是保持入侵检测数据集的分类能力不变,进行特征选择。为了避免传统粗糙集特征选择方法所必需的离散化过程带来的信息损失,引入邻域粗糙集模型,提出基于邻域关系的网络入侵检测数据特征选择方法。该方法从所有特征出发,根据特征重要度逐步删除冗余的特征,最后得到关键特征组进行分类研究。在CUP99入侵检测数据集上进行特征选择,并进行了分类实验,实验结果表明该方法是有效可行的。
Abstract:
Since there are many features in intrusion detection data, which is large and continuous, feature selection plays an important role in intrusion detection. Rough set theory is an efficient classification tool to deal with uncertain, inconsistent and large data. One limitation of rough set theory is the lack of effective methods for processing real valued data. However, intrusion detection data is always continuous. Discrete methods can result in information loss. This paper investigated an approach to intrusion detection feature selection based on neighborhood rough set theory. The approach starts from all the features to gradually remove the redundant features, and finally get the key features of group classification study based on characteristics important degree. To evaluate the performance of the proposed approach, we applied it to CUP99 intrusion detection data set and compared our results with traditional rough set feature selection. Experimental results show that our algorithm is more effective for selecting high discriminative feature in a classification task.

参考文献/References:

[1] Denning D E. An intrusion-detection model [J].IEEE Transactions on Software Engineering,1987, 13(2): 222-232.
[2] Dash M, Liu H. Feature selection for classification [J].Intelligent Data Analysis, 1997, 1(3): 131-156.
[3] Tan F, Fu X Z, Zhang Y Q,et al. A genetic algorithm-based method for feature subset selection [J].Soft Computing, 2008, 12(2): 111-120.
[4] Nadiammai G V, Hemalatha M. Effective approach toward intrusion detection system using data mining techniques[J].Egyptian Informatics Journal,2014, 15(1): 37-50.
[5] Pawlak Z. Rough sets[J].International Journal of Computer and Information Science,1982,11(5): 341-356.
[6] Pawlak Z. Rough sets: Theoretical Aspects of Reasoning About Data[M].Kluwer Academic Publishers, Dordrecht, 1991.
[7] Yue X D,Miao D Q,Zhang N,et al. Multiscale roughness measure for color image segmentation[J].Information Sciences,2012,216:93-112.
[8] Tian D,Zeng X J,Keane J. Core-generating approximate minimum entropy discretization for rough set feature selection in pattern classification[J].International Journal of Approximate Reasoning,2011,52: 863-880.
[9] Qian Y H,Liang J Y,Pedrycz W,et al. Positive approximation: an accelerator for attribute reduction in rough set theory[J].Artificial Intelligence,2010,174(9-10):597-618.
[10] Chen Y M,Miao D Q,Wang R Z,et al. A rough set approach to feature selection based on power set tree [J].Knowledge-Based Systems,2011,24(2): 275-281.
[11] Ma L W. On some types of neighborhood-related covering rough sets[J].International Journal of Approximate Reasoning,2012,53:901-911.
[12]Hu Q H, Yu D R, Xie Z X. Neighborhood classifiers[J].Expert Systems with Applications,2008,34(2):866-876.
[13]王国胤.Rough 集理论与知识获取[M].西安:西安交通大学出版社,2001.
[14]苗夺谦.粗糙集理论中连续属性的离散化方法[J ].自动化学报, 2001, 27(3): 296-302.
[15]张学工.模式识别[M].3版.北京:清华大学出版社,2010.

相似文献/References:

[1]徐守坤,刘 欣,韩 波,等.基于无线数据传输的燃气管网风险评价研究[J].常州大学学报(自然科学版),2009,(04):53.
 XU Sho u -kun,LIU Xin,HAN Bo,et al.Research of Gas Pipelines Network Risk Assessment Based on Wireless Data Transmission[J].Journal of Changzhou University(Natural Science Edition),2009,(03):53.
[2]张岩,石林.基于粗糙集约简技术的排水管路运行风险评估[J].常州大学学报(自然科学版),2011,(04):56.
 ZHANG Yan,SHI Lin.Risk Assessment for Drainpipe Lines Running Based on Reducing Technology of Rough Sets[J].Journal of Changzhou University(Natural Science Edition),2011,(03):56.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(61103246)。 作者简介:陈玉明(1977-),男,江西吉安人,博士,副教授,主要从事粗糙集与数据挖掘研究。Email:ymchen@xmut.edu.cn
更新日期/Last Update: 2014-06-30