[1]金长春,叶昳冬.银修饰对钯/石墨烯电催化活性的促进效果[J].常州大学学报(自然科学版),2017,(01):68-73.[doi:doi:10.3969/j.issn.2095-0411.2017.01.012]
 JIN Changchun,YE Yidong.Promoting Effect of Ag Modification on the Electrocatalytic Activity of Pd/Graphene[J].Journal of Changzhou University(Natural Science Edition),2017,(01):68-73.[doi:doi:10.3969/j.issn.2095-0411.2017.01.012]
点击复制

银修饰对钯/石墨烯电催化活性的促进效果()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年01期
页码:
68-73
栏目:
化学化工
出版日期:
2017-01-28

文章信息/Info

Title:
Promoting Effect of Ag Modification on the Electrocatalytic Activity of Pd/Graphene
作者:
金长春叶昳冬
常州大学 石油化工学院,江苏 常州 213164
Author(s):
JIN Changchun YE Yidong
School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
关键词:
沉淀 纳米粒子 氧化反应 催化活性
Keywords:
deposition nanoparticles oxidation catalytic activity
分类号:
O 646
DOI:
doi:10.3969/j.issn.2095-0411.2017.01.012
文献标志码:
A
摘要:
采用电化学法,对石墨烯负载的Pd纳米粒子表面进行少量的Ag沉淀修饰,用于碱性介质下的1,2-丙二醇电催化氧化反应,检验Ag修饰对Pd/石墨烯电催化活性的影响。仪器和电化学分析和表征结果表明有小部分的Pd纳米粒子表面被Ag所覆盖。虽然Ag的沉积降低了Pd的表面积,而且Ag对1,2-丙二醇氧化反应没有电催化活性,但Ag修饰的Pd/石墨烯与Pd/石墨烯相比具有更高的电催化活性。如Ag与Pd原子比为1:38的Ag修饰的Pd/石墨烯上1,2-丙二醇氧化反应的峰电流密度为Pd/石墨烯上的1.9倍。这表明Ag修饰显著提升Pd/石墨烯对1,2-丙二醇氧化反应的电催化活性,说明Ag和Pd之间存在较强协同催化作用。
Abstract:
The electrochemical modification of graphene-supported Pd nanoparticles with a small amount of Ag and the electrooxidation of propane-1,2-diol on the Ag-modified Pd/graphene catalysts in alkaline solution have been investigated to examine the effect of Ag modification on the activity of Pd/graphene catalyst. Instrumental and electrochemical characterizations show a partial coverage of the Pd nanoparticle surface by the Ag deposit. Although the Pd surface is decreased by the Ag deposit and Ag shows no catalytic activity for the electrooxidation of propane-1,2-diol, the Ag-modified Pd/graphene catalysts exhibit higher activity than that of Pd/graphene. For example, propane-1,2-diol oxidation on the Ag-modified Pd/graphene catalyst with a Ag:Pd atomic ratio of 1:38 shows an about 1.9 times higher peak current density than that on Pd/graphene catalyst. The result suggests that the Ag modification leads to a significant activity enhancement for Pd/graphene catalyst, which is attributed to the synergistic effect between Ag and Pd.

参考文献/References:

[1]BIANCHINI C, SHEN P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells[J].Chemical Reviews, 2009, 109: 4183-4206.
[2]ANTOLINI E. Palladium in fuel cell catalysis[J].Energy and Environmental Science, 2009, 2: 915-931.
[3]ZHANG J, MO Y, VUKMIROVIC M B, et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111)and on carbon-supported Pd nanoparticles[J].Journal of Physical Chemistry B, 2004, 108: 10955-10964.
[4]TAN Q, DU C, YIN G, et al. Highly efficient and stable nonplatinum anode catalyst with Au@Pd core-shell nanostructures for methanol electrooxidation[J].Journal of Catalysis, 2012, 295: 217-222.
[5]SPENDELOWA J S, WIECKOWSKI A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J].Physical Chemistry Chemical Physics, 2007, 9: 2654-2675.
[6]OROZCO G, PéREZ M C, RINCóN A, et al. Electrooxidation of methanol on silver in alkaline medium[J].Journal of Electroanalytical Chemistry, 2000, 495: 71-78.
[7]FENG Y Y, BI L X, LIU Z H, et al. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte[J].Journal of Catalysis, 2012, 290: 18-25.
[8]NGUYEN S T, LAW H M, NGUYEN H T, et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media[J].Applied Catalysis B: Environmental, 2009, 91: 507-515.
[9]ZHAO D, WANG Y H, YAN B, et al. Manipulation of Pt∧Ag nanostructures for advanced electrocatalyst[J].Journal of Physical Chemistry C, 2009, 113: 1242-1250.
[10]SEKOL R C, LI X, COHEN P, et al. Silver palladium core-shell electrocatalyst supported on MWNTs for ORR in alkaline media[J]. Applied Catalysis B: Environmental, 2013, 138: 285-293.
[11]HERRERO E, BULLER L J, ABRU?A H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials[J].Chemical Reviews, 2001, 101: 1897-1930.
[12]JIN C, ZHANG Z, CHEN Z, et al. Effect of Ag modification on catalytic activity of Pd electrode for allyl alcohol oxidation in alkaline solution[J].Electrochimica Acta, 2013, 87: 860-864.
[13]REDINA E, GREISH A, NOVIKOVA R, et al. Au/Pt/TiO2 catalysts prepared by redox method for the chemoselective propane-1,2-dioloxidation to lactic acid and an NMR spectroscopy approach for analyzing the product mixture[J].Applied Catalysis A: General, 2015, 491: 170-183.
[14]PINXT H H C M, KUSTER B F M, MARIN G B. Promoter effects in the Pt-catalysed oxidation of propylene glycol[J].Applied Catalysis A: General, 2000, 191: 45-54.
[15]HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J].Journal of American Chemical Society, 1958, 80: 1339.
[16]AOUN S B, BANG G S, KOGA T, et al. Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions[J].Electrochemistry Communications, 2003, 5: 317-320.
[17]GAO W, ALEMANY L B, CI L, et al.New insights into the structure and reduction of graphite oxide[J].Nature Chemistry, 2009, 1: 403-408.
[18]GRDE? M, UKASZEWSKI M, JERKIEWICZ G, et al. Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption[J].Electrochimica Acta, 2008, 53: 7583-7598.
[19]PAN W, ZHANG X, MA H, et al. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112: 2456-2461.
[20]AVRAMOV-ICIC M, JOVANOVIC V, VLAJNIC G, et al. The electrocatalytic properties of the oxides of noble metals in the electro-oxidation of some organic molecules[J]. Journal of Electroanalytical Chemistry, 1997, 423: 119-124.
[21]WATANABE M, MOTOO S. Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975, 60: 267-273.
[22]VASKEVICH A, ROSENBLUM M, GILEADI E. Underpotential-overpotential transition of silver overlayer on platinum. Part 1. Formation of a Pt+Ag surface alloy[J].Journal of Electroanalytical Chemistry, 1995, 383: 167-174.
[23]BLIZANAC B B, ROSS P N, MARKOVI N M. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk Ag(hkl)studies[J].Journal of Physical Chemistry B, 2006, 110: 4735-4741.
[24]SHAO M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions[J]. Journal of Power Sources, 2011, 196: 2433-2444.

相似文献/References:

[1]冯俊生,翁 平,陆 全.化学沉淀-电解联用处理高盐冶金废水[J].常州大学学报(自然科学版),2011,(02):60.
 FENG Jun-sheng,WEN Ping,LU Quan.Treatment of Metallurgical Waste Water with High-Salt by Chemical Precipitation-Electrolysis[J].Journal of Changzhou University(Natural Science Edition),2011,(01):60.
[2]方必军,贾 楠,丁建宁,等.简单立方结构硫化物Cd0.01Co0.79Cr0.8S2的制备及光学性能[J].常州大学学报(自然科学版),2016,(01):1.[doi:10.3969/j.issn.2095-0411.2016.01.001]
 FANG Bijun,JIA Nan,DING Jianning,et al.Study on the Preparation and Optical Properties of Simple Cublic Structure Sulfide Cd0.01Co0.79Cr0.8S2[J].Journal of Changzhou University(Natural Science Edition),2016,(01):1.[doi:10.3969/j.issn.2095-0411.2016.01.001]
[3]方永勤,薛博颂.疏水改性硅溶胶防雾涂层的合成研究[J].常州大学学报(自然科学版),2016,(05):16.[doi:10.3969/j.issn.2095-0411.2016.05.003]
 FANG Yongqin,XUE Bosong.Synthesis of Hydrophobic Modified Silica Based Antifogging Coating[J].Journal of Changzhou University(Natural Science Edition),2016,(01):16.[doi:10.3969/j.issn.2095-0411.2016.05.003]
[4]江力,黄兴宇,黄文艳,等.固相合成法制备单官能度纳米粒子[J].常州大学学报(自然科学版),2021,33(01):1.[doi:10.3969/j.issn.2095-0411.2021.01.001]
 JIANG Li,HUANG Xingyu,HUANG Wenyan,et al.Fabrication of Mono-Functional Nanoparticles Based on a Solid-Phase Platform[J].Journal of Changzhou University(Natural Science Edition),2021,33(01):1.[doi:10.3969/j.issn.2095-0411.2021.01.001]

备注/Memo

备注/Memo:
收稿日期:2016-03-23。
基金项目:常州市科技计划项目(CJ20159027)。
作者简介:金长春(1961—),男,朝鲜族,吉林和龙人,博士,教授,主要从事电化学材料研究。
更新日期/Last Update: 2017-02-10