参考文献/References:
[1]ZHU X, CHEN J, SCHEIDELER L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses [J]. Biomaterials, 2004, 25(18): 4087-4103.
[2]LONG M, ROCK H J. Titanium alloys in total joint replacement-a materials science perspective [J]. Biomaterials, 1998, 19(18): 1621-1639.
[3]GOMEZ-VEGA J M, SAIZ E, TOMSIA A P. Glass-baded coatings for titanium implant alloys [J]. Journal of Biomedical Materials Research, 1999, 46(4):549-559.
[4]ROGERS S D, HOWIE D W, GRAVES S E, et al. In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium [J]. Journal of Bone & Joint Surgery-British Volume, 1997, 79(2): 311-315.
[5]WANG X Y, LIU Z, LIAO H, et al. Microstructure and electrical properties of plasma sprayed porous TiO2 coatings containing anatase [J]. Thin Solid Films, 2004, 451(11): 37-42.
[6]LIU X, CHU P K, DING C. Surface modification of titanium, titanium alloys and related matrials for biomedical applications [J]. Materials Science and Engineering, 2004, 47(3/4): 49-121.
[7]HAN Y, CHEN D, SUN J, et al. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings [J]. Acta Biomaterialia, 2008, 4(5): 1518-1529.
[8]OCHSENBEIN A, CHAI F, WINTER S, et al. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates [J]. Acta Biomaterialia, 2008, 4(5): 1506-1517.
[9]FERNANDEZ-FAIREN M, QUERALES V, JAKOWLEW A, et al. Tantalum is a good bone graft substitute in tibial tubercle advancement [J]. Clinical Orthopaedics Related Reseaech, 2010, 468(5): 1284-1295.
[10]LI Y, ZHAO T, WEI S, et al. Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum [J]. Materials Science and Engineering, 2010, 30(8): 1227-1235.
[11]葛泉波,何淑兰,毛津淑,等. 生物材料与细胞相互作用及表面修饰 [J]. 化学通报, 2005, 68(1): 43-48.
[12]ZHAO G, RAINES A L, WIELAND M, et al. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography [J]. Biomaterials, 2007, 28(18): 2821-2829.
[13]WEBSTER T J, SIEGEL R W, BIZIOS R. Osteoblast adhesion on nanophase ceramics [J]. Biomaterials, 1999, 20(13): 1221-1227.
[14]KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity [J]. Biomaterials, 2006, 27(15): 2907-2915.
[15]KANG C W, NG H W. Splat morphology and spreading behavior due to oblique impact of droplets onto substrates in plasma spray coating process [J]. Surface and Coatings Technology, 2006, 200(18/19): 5462-5477.
[16]ZAVERI N, MAHAPATRA M, DECEUSTER A, et al. Corrosion resistance of pulsed-treated Ti-6Al-4V implant in simulated biofluids [J]. Electrochimica Acta, 2008, 53: 5022-5032.
[17]NATISHAN P M, MCCAFFERTY E, HUBLER G K. Surface charge considerations in the pitting of ion-implanted aluminum [J]. Journal of the Electrochemical Society, 1988, 135(2): 321-327.
[18]KOSMULSHI M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature [J]. Advances in Colloid and Interface Science, 2009, 152(1/2): 14-25.
[19]NIE X, LEYLAND A, MATTEWS A, et al. Effects of solution pH and electrical parameter on hydroxyapatite coatings deposited by plasma-assisted electrophoresis technique [J]. Journal of Biomedical Materials Research, 2001, 57(4): 612-618.
[20]WENG J, LIU Q, WOLKE J G C, et al. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid [J]. Biomaterials, 1997, 18(15): 1027-1035.
[21]LIN C M, YEN S K. Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fluid [J]. Materials Science and Engineering C, 2006, 26(1): 54-64.
[22]赵晓兵, 刘宣勇, 陈志刚, 等. 等离子体喷涂氧化钛涂层的生物活性研究 [J]. 无机材料学报, 2008, 23(5): 1021-1026.