参考文献/References:
[1]YAKABE H, OGIWARA T, HISHINUMA M, et al. 3-D model calculation for planar SOFC[J]. Journal of Power Sources, 2001, 102(1/2): 144-154.
[2]HUANG C M, SHY S S, LI H H, et al. The impact of flow distributors on the performance of planar solid oxide fuel cell[J]. Journal of Power Sources, 2010, 195(19): 6280-6286.
[3]JACKSON J M, HUPERT M L, SOPER S A. Discrete geometry optimization for reducing flow non-uniformity, asymmetry, and parasitic minor loss pressure drops in Z-type configurations of fuel cells[J]. Journal of Power Sources, 2014, 269: 274-283.
[4]DEY T, SINGDEO D, BASU R N, et al. Improvement in solid oxide fuel cell performance through design modifications: an approach based on root cause analysis[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17258-17266.
[5]DUHN J D, JENSEN A D, WEDEL S, et al. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling[J]. Journal of Power Sources, 2016, 336: 261-271.
[6]KHANDKAR A C, ELANGOVAN S. Electrical connector apparatus for planar solid oxide fuel cell stacks: US5856035[P].1999-01-05.
[7]MINH N Q, HORNE C R. Method of fabricating a monolithic solid oxide fuel cell: US5290642[P].1994-03-01.
[8]DONG S K, JUNG W N, RASHID K, et al. Design and numerical analysis of a planar anode-supported SOFC stack[J]. Renewable Energy, 2016, 94: 637-650.
[9]SU S C, HE H H, CHEN D F, et al. Flow distribution analyzing for the solid oxide fuel cell short stacks with rectangular and discrete cylindrical rib configurations[J]. International Journal of Hydrogen Energy, 2015, 40(1): 577-592.
[10]CHEN Q Y, WANG Q W, ZHANG J, et al. Effect of bi-layer interconnector design on mass transfer performance in porous anode of solid oxide fuel cells[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1994-2003.
[11]YAN M, FU P, LI X, et al. Mass transfer enhancement of a spiral-like interconnector for planar solid oxide fuel cells[J]. Applied Energy, 2015, 160: 954-964.
[12]JIANG S P, LOVE J G, APATEANU L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells[J]. Solid State Ionics, 2003, 160(1/2): 15-26.
[13]TANNER C W, VIRKAR A V. A simple model for interconnect design of planar solid oxide fuel cells[J]. Journal of Power Sources, 2003, 113(1): 44-56.
[14]ZHU H Y, KEE R J. The influence of current collection on the performance of tubular anode-supported SOFC cells[J]. Journal of Power Sources, 2007, 169(2): 315-326.
[15]LIU S X, SONG C, LIN Z J. The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization[J]. Journal of Power Sources, 2008, 183(1): 214-225.
[16]KEE R J, KORADA P, WALTERS K, et al. A generalized model of the flow distribution in channel networks of planar fuel cells[J]. Journal of Power Sources, 2002, 109(1): 148-159.
[17]KORNELY M, LEONIDE A, WEBER A, et al. Performance limiting factors in anode-supported cells originating from metallic interconnectordesign[J]. Journal of Power Sources, 2011, 196(17): 7209-7216.
[18]LIN Z J, STEVENSON J W, KHALEEL M A. The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs[J]. Journal of Power Sources, 2003, 117(1/2): 92-97.
[19]CHEN Q Y, ZENG M, ZHANG J, et al. Optimal design of bi-layer interconnector for SOFC based on CFD-Taguchi method[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4292-4300.
[20]ANDREASSI L, RUBEO G, UBERTINI S, et al. Experimental and numerical analysis of a radial flow solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4559-4574.
[21]SHI J X, XUE X J. CFD analysis of a novel symmetrical planar SOFC design with micro-flow channels[J]. Chemical Engineering Journal, 2010, 163(1/2): 119-125.
[22]LI P W, CHEN S P, CHYU M K. To achieve the best performance through optimization of gas delivery and current collection in solid oxide fuel cells[J]. Journal of Fuel Cell Science and Technology, 2006, 3(2): 188.