[1]付全荣,魏 炜,刘凤霞,等.固体氧化物燃料电池连接体新结构设计及性能优化[J].常州大学学报(自然科学版),2019,31(05):1-8.[doi:10.3969/j.issn.2095-0411.2019.05.001]
 FU Quanrong,WEI Wei,LIU Fengxia,et al.New Structure Design and Performance Optimization of Solid Oxide Fuel Cell Connector[J].Journal of Changzhou University(Natural Science Edition),2019,31(05):1-8.[doi:10.3969/j.issn.2095-0411.2019.05.001]
点击复制

固体氧化物燃料电池连接体新结构设计及性能优化()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年05期
页码:
1-8
栏目:
化学化工
出版日期:
2019-09-28

文章信息/Info

Title:
New Structure Design and Performance Optimization of Solid Oxide Fuel Cell Connector
文章编号:
2095-0411(2019)05-0001-08
作者:
付全荣魏 炜刘凤霞杨 潮冯义博帕力扎提·阿斯克尔刘志军
(大连理工大学 流体与粉体工程研究设计所,辽宁 大连 116024; 大连理工大学 化工机械与安全学院,辽宁 大连 116024)
Author(s):
FU Quanrong WEI Wei LIU Fengxia YANG Chao FENG Yibo PALIZHATI Asikeer LIU Zhijun
(Research & Design Institute of Fluid and Power Engineering,School of Chemical Machinery and Safety Engineering, Dalian University of Technology,Dalian 116024,China)
关键词:
固体氧化物燃料电池(SOFC) 连接体 流场均匀性 结构设计
Keywords:
solid oxide fuel cell(SOFC) connectome flow fields uniformity structural design
分类号:
TQ 515.8
DOI:
10.3969/j.issn.2095-0411.2019.05.001
文献标志码:
A
摘要:
固体氧化物燃料电池(SOFC)是一种将燃料的化学能直接转换成电能的发电装置,其中流场均匀性对电池性能有显著影响,而连接体内部结构是决定流场均匀性的重要因素。采用数值模拟方法对连接体进行设计,以实现电池性能的最优化。研究结果表明:与普通连接体相比,添加泡沫Ni后,流场均匀性提高了15%以上。通过组合不同孔隙率的泡沫Ni,流场均匀度指数可达到95%以上,最大功率密度提高了11.4%。
Abstract:
Solid oxide fuel cell(SOFC)is a power generation device that converts chemical energy of fuel directly into electricity. Its flow field uniformity has a significant influence on battery performance. The internal structure of the connectome was one of the most important factors to determine the flow field uniformity. A new connectome structure was designed and a simulation was established for optimization design. The results showed that the flow field uniformity was increased by more than 15% after the addition of Ni foam. By combining foam Ni with different porosity, the flow field uniformity index can reach more than 95%, and the maximum power density is increased by 11.4%.

参考文献/References:

[1]YAKABE H, OGIWARA T, HISHINUMA M, et al. 3-D model calculation for planar SOFC[J]. Journal of Power Sources, 2001, 102(1/2): 144-154.
[2]HUANG C M, SHY S S, LI H H, et al. The impact of flow distributors on the performance of planar solid oxide fuel cell[J]. Journal of Power Sources, 2010, 195(19): 6280-6286.
[3]JACKSON J M, HUPERT M L, SOPER S A. Discrete geometry optimization for reducing flow non-uniformity, asymmetry, and parasitic minor loss pressure drops in Z-type configurations of fuel cells[J]. Journal of Power Sources, 2014, 269: 274-283.
[4]DEY T, SINGDEO D, BASU R N, et al. Improvement in solid oxide fuel cell performance through design modifications: an approach based on root cause analysis[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17258-17266.
[5]DUHN J D, JENSEN A D, WEDEL S, et al. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling[J]. Journal of Power Sources, 2016, 336: 261-271.
[6]KHANDKAR A C, ELANGOVAN S. Electrical connector apparatus for planar solid oxide fuel cell stacks: US5856035[P].1999-01-05.
[7]MINH N Q, HORNE C R. Method of fabricating a monolithic solid oxide fuel cell: US5290642[P].1994-03-01.
[8]DONG S K, JUNG W N, RASHID K, et al. Design and numerical analysis of a planar anode-supported SOFC stack[J]. Renewable Energy, 2016, 94: 637-650.
[9]SU S C, HE H H, CHEN D F, et al. Flow distribution analyzing for the solid oxide fuel cell short stacks with rectangular and discrete cylindrical rib configurations[J]. International Journal of Hydrogen Energy, 2015, 40(1): 577-592.
[10]CHEN Q Y, WANG Q W, ZHANG J, et al. Effect of bi-layer interconnector design on mass transfer performance in porous anode of solid oxide fuel cells[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1994-2003.
[11]YAN M, FU P, LI X, et al. Mass transfer enhancement of a spiral-like interconnector for planar solid oxide fuel cells[J]. Applied Energy, 2015, 160: 954-964.
[12]JIANG S P, LOVE J G, APATEANU L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells[J]. Solid State Ionics, 2003, 160(1/2): 15-26.
[13]TANNER C W, VIRKAR A V. A simple model for interconnect design of planar solid oxide fuel cells[J]. Journal of Power Sources, 2003, 113(1): 44-56.
[14]ZHU H Y, KEE R J. The influence of current collection on the performance of tubular anode-supported SOFC cells[J]. Journal of Power Sources, 2007, 169(2): 315-326.
[15]LIU S X, SONG C, LIN Z J. The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization[J]. Journal of Power Sources, 2008, 183(1): 214-225.
[16]KEE R J, KORADA P, WALTERS K, et al. A generalized model of the flow distribution in channel networks of planar fuel cells[J]. Journal of Power Sources, 2002, 109(1): 148-159.
[17]KORNELY M, LEONIDE A, WEBER A, et al. Performance limiting factors in anode-supported cells originating from metallic interconnectordesign[J]. Journal of Power Sources, 2011, 196(17): 7209-7216.
[18]LIN Z J, STEVENSON J W, KHALEEL M A. The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs[J]. Journal of Power Sources, 2003, 117(1/2): 92-97.
[19]CHEN Q Y, ZENG M, ZHANG J, et al. Optimal design of bi-layer interconnector for SOFC based on CFD-Taguchi method[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4292-4300.
[20]ANDREASSI L, RUBEO G, UBERTINI S, et al. Experimental and numerical analysis of a radial flow solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4559-4574.
[21]SHI J X, XUE X J. CFD analysis of a novel symmetrical planar SOFC design with micro-flow channels[J]. Chemical Engineering Journal, 2010, 163(1/2): 119-125.
[22]LI P W, CHEN S P, CHYU M K. To achieve the best performance through optimization of gas delivery and current collection in solid oxide fuel cells[J]. Journal of Fuel Cell Science and Technology, 2006, 3(2): 188.

备注/Memo

备注/Memo:
收稿日期:2019-03-26。
基金项目:国家自然科学基金资助项目(21676049)。
作者简介:付全荣(1984—),男,山东泰安人,博士生。通信联系人:刘志军(1969—),E-mail: liuzj@dlut.edu.cn
更新日期/Last Update: 2019-09-30