参考文献/References:
[1]朱汉青. 电动汽车充电桩冷却电缆: 201710226268.0[P]. 2017-04-08.
[2]黄焕强. 一种新能源电动汽车柔性冷却散热、温控充电桩电缆: 201621302721.9[P]. 2016-11-30.
[3]王振金, 李华斌. 相变自控温屏蔽电缆: 201310739853.2[P]. 2013-12-29.
[4]郭刚. 计及电流波动性的三芯电缆相变控温方法及其性能分析[J]. 河北电力技术, 2016, 35(2):18-21.
[5]尚燕, 张雄. 相变储能材料的应用及研究现状[J]. 材料导报, 2005, 19(5):265-268.
[6]庄骏, 张红. 热管技术及其工程应用[J]. 能源研究与利用, 2000(5):41.
[7]刘锦余. 利用热管冷却地下电缆[J]. 中国电力, 1981(5):72-73.
[8]GARIMELLA S V, FLEISCHER A S, MURTHY J Y, et al. Thermal challenges in next-generation electronic systems[J]. IEEE Transactions on Components & Packaging Technologies, 2008, 31(4):801-815.
[9]JAGANNADHAM K. Electrical conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical & Materials Transactions B, 2012, 43(2):316-324.
[10]MARTINGALLEGO M, VERDEJO R, KHAYET M, et al. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites[J]. Nanoscale Research Letters, 2011, 6(1):1-7.
[11]IM H, KIM J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon, 2012, 50(15):5429-5440.
[12]SHI Z, RADWAN M, KIRIHARA S, et al. Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers[J]. Applied Physics Letters, 2009, 95(22):282.
[13]ZHI C, BANDO Y, TERAO T, et al. Boron nanotube-polymer composites: towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers[J]. Advanced Functional Materials, 2010, 19(12):1857-1862.
[14]BABAEI H, KEBLINSKI P, KHODADADI J M. Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene[J]. International Journal of Heat & Mass Transfer, 2013, 58(1):209-216.
[15]SHAHIL K M, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2):861-867.
[16]BONNET P, SIREUDE D, GARNIER B, et al. Thermal properties and percolation in carbon nanotube-polymer composites[J]. Applied Physics Letters, 2007, 91(20):787.
[17]POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2005, 6(1):96-100.
[18]GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15):151911.
[19]SARVAR F, WHALLEY D C, CONWAY P P. Thermal interface materials: a review of the state of the art[C]// Electronics Systemintegration Technology Conference. Dresden Geruam: IEEE Publisher, 2006:1292-1302.
[20]PRASHER R S, NARASIMHAN S. Nano and micro technology-based next-generation package-level cooling solutions[J]. Intel Technology Journal, 2005, 9(4):285-296.
[21]FELBA J. Thermally conductive nanocomposites[M]// Nano-Bio-Electronic, Photonic and MEMS Packaging. Boston: Springer US, 2010:277-314.
[22]TANG B, HU G, GAO H, et al. Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials[J]. International Journal of Heat & Mass Transfer, 2015, 85:420-429.
[23]SHAHIL K M F, BALANDIN A A. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials[J]. Solid State Communications, 2012, 152(15):1331-1340.
[24]MOISALA A, LI Q, KINLOCH I A, et al. Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites[J]. Composites Science & Technology, 2006, 66(10):1285-1288.
[25]陈素清, 黄国波, 鲍建设, 等. 石墨烯导热增强相变储能材料的制备及性能[J]. 新型炭材料, 2018, 33(3): 262-267.
[26]孔丽. 石墨烯基相变储能复合材料的制备及导热机理分析的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[27]YANG J, QI G, LIU Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon, 2016, 100: 693-702.
[28] ALLAHBAKHSH A, ARJMAND M. Graphene-based phase change composites for energy harvesting and storage: state of the art and future prospects[J]. Carbon, 2019, 148: 441-480.
[29]LIU Y, ZHANG D. Effect of covalent functionalization and phase change matrix on heat transfer across graphene/phase change material interfaces[J]. Applied Thermal Engineering, 2019, 151: 38-45.
[30]LEONG K Y, ABDUL R M R, GURUNATHAN B A. Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges[J]. Journal of Energy Storage, 2019, 21: 18-31.