[1]李 森,唐 波,马婷婷,等.新能源汽车低压充电电缆增强散热研究[J].常州大学学报(自然科学版),2020,32(01):62-69.[doi:10.3969/j.issn.2095-0411.2020.01.010]
 LI Sen,TANG Bo,MA Tingting,et al.Review of Research on the Enhanced Heat Dissipation of Low Voltage Charging Cables for New Energy Vehicles[J].Journal of Changzhou University(Natural Science Edition),2020,32(01):62-69.[doi:10.3969/j.issn.2095-0411.2020.01.010]
点击复制

新能源汽车低压充电电缆增强散热研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年01期
页码:
62-69
栏目:
机械制造及其自动化
出版日期:
2020-01-28

文章信息/Info

Title:
Review of Research on the Enhanced Heat Dissipation of Low Voltage Charging Cables for New Energy Vehicles
文章编号:
2095-0411(2020)01-0062-08
作者:
李 森唐 波马婷婷张锡彦纪国剑
(常州大学 石油工程学院,江苏 常州 213164)
Author(s):
LI Sen TANG Bo MA Tingting ZHANG Xiyan JI Guojian
(School of Petroleum Engineering,Changzhou University,Changzhou 213164,China)
关键词:
充电电缆 新能源汽车 强制冷却 相变材料 石墨烯
Keywords:
charging cable new energy vehicles forced cooling phase-change material graphene
分类号:
TM 21
DOI:
10.3969/j.issn.2095-0411.2020.01.010
文献标志码:
A
摘要:
目前新能源汽车充电电缆载流量小,充电时间长,成为限制新能源汽车推广的一个重要因素。要进一步提高载流量,必然对电缆散热技术提出更高要求,低压充电电缆快速散热成为亟待解决的技术问题。根据低压电缆散热需求,综述了强制冷却技术、相变技术、绝缘层改性材料技术在电缆增强散热方面的应用研究,指出了这几种研究方向的实现方法和优缺点,阐述了低压充电电缆增强散热研究的主要发展方向。
Abstract:
At present, the low carrying capacity of the charging cable and the long charging time has become an important factor restricting the promotion of new energy vehicles. It is necessary to put forward higher requirements for the cable heat dissipation technology to further increase the carrying capacity. The rapid heat dissipation of low-voltage charging cable becomes a technical problem that needs to be solved urgently. The application researches of forced cooling technology, phase-change technology and insulating layer modification material technology in enhancing heat dissipation of cable are reviewed in this paper according to the heat dissipation demand of low-voltage cable. The realization methods and advantages and disadvantages of these research directions are pointed out. The main development direction of the study on the enhancing heat dissipation of low-voltage charging cable is described.

参考文献/References:

[1]朱汉青. 电动汽车充电桩冷却电缆: 201710226268.0[P]. 2017-04-08.
[2]黄焕强. 一种新能源电动汽车柔性冷却散热、温控充电桩电缆: 201621302721.9[P]. 2016-11-30.
[3]王振金, 李华斌. 相变自控温屏蔽电缆: 201310739853.2[P]. 2013-12-29.
[4]郭刚. 计及电流波动性的三芯电缆相变控温方法及其性能分析[J]. 河北电力技术, 2016, 35(2):18-21.
[5]尚燕, 张雄. 相变储能材料的应用及研究现状[J]. 材料导报, 2005, 19(5):265-268.
[6]庄骏, 张红. 热管技术及其工程应用[J]. 能源研究与利用, 2000(5):41.
[7]刘锦余. 利用热管冷却地下电缆[J]. 中国电力, 1981(5):72-73.
[8]GARIMELLA S V, FLEISCHER A S, MURTHY J Y, et al. Thermal challenges in next-generation electronic systems[J]. IEEE Transactions on Components & Packaging Technologies, 2008, 31(4):801-815.
[9]JAGANNADHAM K. Electrical conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical & Materials Transactions B, 2012, 43(2):316-324.
[10]MARTINGALLEGO M, VERDEJO R, KHAYET M, et al. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites[J]. Nanoscale Research Letters, 2011, 6(1):1-7.
[11]IM H, KIM J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon, 2012, 50(15):5429-5440.
[12]SHI Z, RADWAN M, KIRIHARA S, et al. Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers[J]. Applied Physics Letters, 2009, 95(22):282.
[13]ZHI C, BANDO Y, TERAO T, et al. Boron nanotube-polymer composites: towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers[J]. Advanced Functional Materials, 2010, 19(12):1857-1862.
[14]BABAEI H, KEBLINSKI P, KHODADADI J M. Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene[J]. International Journal of Heat & Mass Transfer, 2013, 58(1):209-216.
[15]SHAHIL K M, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2):861-867.
[16]BONNET P, SIREUDE D, GARNIER B, et al. Thermal properties and percolation in carbon nanotube-polymer composites[J]. Applied Physics Letters, 2007, 91(20):787.
[17]POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2005, 6(1):96-100.
[18]GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15):151911.
[19]SARVAR F, WHALLEY D C, CONWAY P P. Thermal interface materials: a review of the state of the art[C]// Electronics Systemintegration Technology Conference. Dresden Geruam: IEEE Publisher, 2006:1292-1302.
[20]PRASHER R S, NARASIMHAN S. Nano and micro technology-based next-generation package-level cooling solutions[J]. Intel Technology Journal, 2005, 9(4):285-296.
[21]FELBA J. Thermally conductive nanocomposites[M]// Nano-Bio-Electronic, Photonic and MEMS Packaging. Boston: Springer US, 2010:277-314.
[22]TANG B, HU G, GAO H, et al. Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials[J]. International Journal of Heat & Mass Transfer, 2015, 85:420-429.
[23]SHAHIL K M F, BALANDIN A A. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials[J]. Solid State Communications, 2012, 152(15):1331-1340.
[24]MOISALA A, LI Q, KINLOCH I A, et al. Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites[J]. Composites Science & Technology, 2006, 66(10):1285-1288.
[25]陈素清, 黄国波, 鲍建设, 等. 石墨烯导热增强相变储能材料的制备及性能[J]. 新型炭材料, 2018, 33(3): 262-267.
[26]孔丽. 石墨烯基相变储能复合材料的制备及导热机理分析的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[27]YANG J, QI G, LIU Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon, 2016, 100: 693-702.
[28] ALLAHBAKHSH A, ARJMAND M. Graphene-based phase change composites for energy harvesting and storage: state of the art and future prospects[J]. Carbon, 2019, 148: 441-480.
[29]LIU Y, ZHANG D. Effect of covalent functionalization and phase change matrix on heat transfer across graphene/phase change material interfaces[J]. Applied Thermal Engineering, 2019, 151: 38-45.
[30]LEONG K Y, ABDUL R M R, GURUNATHAN B A. Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges[J]. Journal of Energy Storage, 2019, 21: 18-31.

备注/Memo

备注/Memo:
收稿日期:2019-07-02。
基金项目:江苏省自然科学基金资助项目(BK20150266)。
作者简介:李森(1985—),男,江苏徐州人,博士,讲师。通信联系人:纪国剑(1980—),E-mail:jgj@cczu.edu.cn
更新日期/Last Update: 2020-01-13