参考文献/References:
[1]杨健辉,朱利伟,余建雨,等. 不同轻质混凝土的强度及耐久性影响因素分析[J]. 混凝土,2017(7):139-143.
[2]刘昊栋,曹瑞东,杨会伟,等. 机制砂-EPS轻质混凝土性能试验研究[J]. 混凝土, 2017(12):108-111.
[3]王武斌, 赵文辉, 苏谦, 等. 聚丙烯纤维增强泡沫轻质混凝土力学性能试验研究[J]. 铁道建筑, 2017(2): 146-150.
[4]吴辉琴, 王痛快, 吴超, 等. EPS轻质节能混凝土砌块砌体受压变形性能试验研究[J]. 施工技术, 2016, 45(12): 90-94.
[5]KOEBEL M, RIGACCI A, ACHARD P. Aerogel-based thermal superinsulation:an overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3): 315-339.
[6]CUCE E, CUCE P M, WOOD C J, et al. Toward aerogel based thermal superinsulation in buildings:a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 273-299.
[7]XIE T, HE Y L, HU Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 540-552.
[8]DU A, ZHOU B, ZHANG Z H, et al. A special material or a new state of matter: a review and reconsideration of the aerogel[J]. Materials, 2013, 6(3): 941-968.
[9]CUI H,ZONG S,WEI W,et al. Preparetion of silica aerogel-like adsorption material and its adsorption capability[J]. Environmental Protection of Chemical Industry,2014,34(6):581-584.
[10]LIU X,HAN Y, YU X Y,et al. Preparation of aerogel based on sorghum straw[J]. Journal of Dalian Polytechnic University,2016,35(5):343-347.
[11]KISTLER S S. Coherent expanded-aerogels[J]. The Journal of Physical Chemistry, 1932, 36(1): 52-64.
[12]孔勇,沈晓冬,崔升. 气凝胶纳米材料[J]. 中国材料进展,2016,35(8):569-576.
[13]史亚春,李铁虎,吕婧,等. 气凝胶材料的研究进展[J]. 材料导报,2013,27(9):20-24.
[14]GESSER H D, GOSWAMI P C. Aerogels and related porous materials[J]. Chemical Reviews, 1989, 89(4): 765-788.
[15]沈军, 王际超, 倪星元, 等. 以水玻璃为源常压制备高保温二氧化硅气凝胶[J]. 功能材料, 2009, 40(1): 149-151, 158.
[16]康爽. 低密度高绝热性能SiO2气凝胶的常压制备及结构性能研究[D]. 西安:长安大学,2012.
[17]LIAO Y D, WU H J, DING Y F, et al. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3): 445-456.
[18]WU H J, CHEN Y T, CHEN Q L, et al. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation[J]. Journal of Nanomaterials, 2013, 2013: 1-8.
[19]谭僖,杨穆,高鸿毅,等. 纤维复合二氧化硅气凝胶材料的制备[J]. 功能材料,2014,45(16):139-142.
[20]徐海珣. 硅基复合气凝胶的制备及其应用基础研究[D]. 大连:大连理工大学,2011.
[21]祖国庆. 耐高温核/壳结构TiO2/SiO2复合气凝胶的制备及其光催化性能[J]. 物理化学学报,2007(2):360-368.
[22]朱美玲. Cu掺杂TiO2/SiO2复合气凝胶常压制备及光催化性能研究[D]. 大连:大连工业大学, 2014.
[23]田宇,崔帅文,沈钰皓,等. 建筑物外墙墙面不同节能保温材料的性能分析[J]. 新型建筑材料,2017(4):116-119.
[24]赫强. 应用于建筑保温领域的聚氨酯硬泡材料[J]. 合成树脂及塑料,2015,32(5):99-102.
[25]卢秀梅. 酚醛泡沫在现代建筑保温工程中的应用及改性研究进展[J]. 合成树脂及塑料, 2015, 32(5): 87-89.
[26]孟玮,陈蓓,吴丽雅. 膨胀珍珠岩-聚合物复合保温砂浆配合比正交试验研究[J]. 新型建筑材料,2015, 42(12):21-23.
[27]吕丹丹,刘元珍,李珠,等. 玻化微珠保温砂浆碳化和冻融性能试验研究[J]. 混凝土,2015(4):127-129.
[28]KIM S, SEO J, CHA J, et al. Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel[J]. Construction and Building Materials, 2013, 40: 501-505.
[29]GAO T, JELLE B P, GUSTAVSEN A, et al. Aerogel-incorporated concrete: an experimental study[J]. Construction and Building Materials, 2014, 52: 130-136.
[30]郭金涛. 硅气凝胶/玻化微珠复合保温砂浆研究[D]. 西安:长安大学,2011.
[31]WANG F,HUANG L,LIU Z H,et al. Performance optimization of SiO2 aerogel mortar[J]. Equipment Environmental Engineering,2016,13(2):13-17.
[32]王飞,刘朝辉,邓智平,等. 不同体积掺量的SiO2气凝胶对砂浆性能的影响[J]. 功能材料,2016,47(4):64-69.
[33]王飞,黄露,刘朝辉,等. SiO2气凝胶砂浆性能的优化研究[J]. 装备环境工程,2016,13(2):13-17.
[34]刘朝辉,丁逸栋,王飞,等. KH550改性SiO2气凝胶及其掺杂对砂浆性能的研究[J]. 装备环境工程,2017,14(1):71-77.
[35]NG S, SANDBERG L I C, JELLE B P. Insulating and strength properties of an aerogel-incorporated mortar based an UHPC formulations[J]. Key Engineering Materials, 2014, 629/630: 43-48.
[36]RATKE L.Herstellung und eigenschaften eines neuen leichtbetons: aerogelbeton[J]. Beton-Und Stahlbetonbau, 2008, 103(4): 236-243.
[37]叶青,莫荣辉,余亚超,等. 掺氮改性纳米TiO2光催化材料的聚合物水泥砂浆的应用研究[J]. 新型建筑材料,2009,36(4):15-17.
[38]RUOT B, PLASSAIS A, OLIVE F, et al. TiO2-containing cement pastes and mortars: measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test[J]. Solar Energy, 2009, 83(10): 1794-1801.
[39]BOGUTYN S, ARBOLEDA C, BORDELON A, et al. Rejuvenation techniques for mortar containing photocatalytic TiO2 material[J]. Construction and Building Materials, 2015, 96: 96-101.
[40]DIAMANTI M V, DEL CURTO B, ORMELLESE M, et al. Photocatalytic and self-cleaning activity of colored mortars containing TiO2[J]. Construction and Building Materials, 2013, 46: 167-174.
[41]DIAMANTI M V, PAOLINI R, ROSSINI M, et al. Long term self-cleaning and photocatalytic performance ofanatase added mortars exposed to the urban environment[J]. Construction and Building Materials, 2015, 96: 270-278.
[42]孙亮. 气凝胶膨胀珍珠岩的一种制备方法及其在混凝土中的应用[D]. 太原:太原理工大学,2015.
[43]FICKLER S, MILOW B, RATKE L, et al. Development of high performance aerogel concrete[J]. Energy Procedia, 2015, 78: 406-411.
[44]TSIOULOU O, LAMPROPOULOS A. Development of novel low thermal conductivity concrete using aerogel powder[J]. Construction & Building Materials,2017,131:66-77.
[45]CHENG H L. Influence on the performances of foamed concrete by silica aerogels[J]. American Journal of Civil Engineering, 2015, 3(5): 183.
[46]许孝春. 光催化混凝土的研究与发展[J]. 孝感学院学报, 2001, 21(3): 53-55.
[47]钱春香,赵联芳,付大放,等. 水泥基材料负载纳米TiO2光催化反应动力学模型研究[J]. 安全与环境学报,2005,5(2):60-64.
[48]钱春香,赵联芳,付大放,等. 温湿度和光强对水泥基材料负载纳米TiO2光催化氧化氮氧化物的影响[J]. 环境科学学报,2005,25(5):623-630.
[49]李丽,钱春香. 南京长江三桥光催化功能性混凝土路去除汽车排放氮氧化物的研究[J]. 河南科技大学学报(自然科学版),2009,30(1):49-52.
[50]钱春香,赵联芳,付大放,等. 路面材料负载纳米二氧化钛光催化降解氮氧化物[J]. 硅酸盐学报,2005,33(4):422-427.
[51]都雪静,许洪国,关强,等. 纳米TiO2含量对汽车尾气因子降解效能影响实验研究[J]. 公路交通科技,2007,24(10):155-158.
[52]韩相春,白海莹,关强,等. 二氧化钛光催化材料降解汽车尾气的测试系统设计[J]. 东北林业大学学报,2005(5):89-91.
[53]关强,陈萌. 公路水泥混凝土路面喷涂纳米TiO2净化机动车排放污染物研究[J]. 公路交通科技,2009,26(3):154-158.
[54]BEELDENS A,KNAPEN E,VAN GEMERT D. Polymers in concrete:the synergistic effect between Japan and Belgium photocatalytic activity of TiO2 in polymer modified mortar[J]. Geological Society London Special Publications, 2012,370(1):139-168.
[55]WANG D,LEMG Z,HUBEN M,et al. Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material[J]. Construction & Building Materials,2016,107:44-51.
[56]AMRHEIN K,HELMIG A,KROHM W,等. 掺具有光催化效果添加剂的混凝土可提高空气污染物降解效率[J]. 建筑砌块与砌块建筑, 2015(3):12-18.
[57]郭重霄,郝培文. 二氧化钛光催化剂在沥青路面中的应用[J]. 中外公路,2013,33(5):271-275.
[58]SHEN W,ZHANG C,LI Q,et al. Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete[J]. Journal of Cleaner Production,2015,87(1):762-765.
[59]董瑞,沈卫国,钟景波,等. 光催化自洁净混凝土研究进展[J]. 混凝土,2011(8):62-66.
[60]郭咏梅,洪晓燕,张强,等. 纳米光催化生态道路降解汽车尾气研究进展[J]. 湖南交通科技,2016,42(2):67-71.
[61]倪雅. 混凝土的极致 2015年米兰世博会意大利馆[J]. 时代建筑,2015(4):78-83.