[1]郭文敏,万永华,赵炫皓.多孔介质分形维数的两相渗吸数学模型研究[J].常州大学学报(自然科学版),2020,32(01):85-92.[doi:10.3969/j.issn.2095-0411.2020.01.013]
 GUO Wenmin,WAN Yonghua,ZHAO Xuanhao.Study on Two-Phase Permeation Mathematical Model Considering Fractal Dimension of Porous Media[J].Journal of Changzhou University(Natural Science Edition),2020,32(01):85-92.[doi:10.3969/j.issn.2095-0411.2020.01.013]
点击复制

多孔介质分形维数的两相渗吸数学模型研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年01期
页码:
85-92
栏目:
石油与天然气工程
出版日期:
2020-01-28

文章信息/Info

Title:
Study on Two-Phase Permeation Mathematical Model Considering Fractal Dimension of Porous Media
文章编号:
2095-0411(2020)01-0085-08
作者:
郭文敏万永华赵炫皓
(常州大学 石油工程学院,江苏 常州 213164)
Author(s):
GUO Wenmin WAN Yonghua ZHAO Xuanhao
(School of Petroleum Engineering, Changzhou University, Changzhou 213164,China)
关键词:
多孔介质 界面运移速度 分形维数 渗吸
Keywords:
porous media interface moving velocity fractal dimension imbibition
分类号:
TE 33
DOI:
10.3969/j.issn.2095-0411.2020.01.013
文献标志码:
A
摘要:
在Poiseuille方程基础上,考虑微观渗吸过程重力、毛管力作用的影响,利用分形维数表征多孔介质微观复杂结构特征,建立了微观两相界面渗吸数学模型。利用压汞实验退汞曲线中退汞压力与退汞量之间的线性关系,可以得到经润湿相和非润湿相表面局部占据后,微观孔隙内部两相可动空间的分形维数,且两相界面运移时间大小等于界面前缘位置对应的曲线积分面积。应用表明:数学模型计算结果与两相渗吸实验数据吻合效果非常好,由此证明该数学模型的建立能够有效模拟两相渗吸过程,为当前多孔介质渗吸研究提供了有效的理论及实验支持,有效降低两相渗吸实验研究周期,提高研究效率。
Abstract:
On the basis of the Poiseuille equation, considering the influence of gravity and capillary force in the microscopic imbibition process, the fractal dimension is used to characterize the microscopic and complex structure of the porous medium, and the mathematic model of microscopic two-phase imbibition is established. The fractal dimension of the two phase movable space in the porous media is obtained by the linear relationship between the mercury removal pressure and the amount of mercury entered by the mercury intrusion curve,and the interfacial moving time is equal to the curve integral area corresponding to the leading edge position of the interface. The results show that the results of the mathematical model are compared with the experimental results of the two-phase imbibition test. The study of mathematic model has provided effective theoretical and experimental support, which can effectively reduce the experimental period of two-phase imbibition and improve the research efficiency.

参考文献/References:

[1]TERZAGHI K. Theoretical soil mechanics[M]. New York: Wiley, 1943:75-86.
[2]AMICO S C, LEKAKOU C. Axial impregnation of a fiber bundle Part 1: capillary experiments[J]. Polym Compos, 2002,23(2): 249-263.
[3]RAPOPORT L A, LEAS W J. Properties of linear waterflood[J]. Trans AIME, 1953, 5(5): 139-148.
[4]张星. 低渗透砂岩油藏渗吸规律研究[D]. 东营: 胜利油田采油院, 2009: 34-25.
[5]CAI J C, YU B M, ZOU M Q, et al. Fractal characterization of spontaneous co-current imbibition in porous media[J].Energy Fuels, 2010,24(3): 1860-1867.
[6]BENAVENTE D, LOCK P, ANGELES G D C M, et al. Predicting the capillary imbibition of porous rocks from microstructure[J]. Transp Porous Media, 2002,49(1): 59-76.
[7]LEVENTIS A, VERGANELAKIS D A, HALSE M R, et al. Capillary imbibition and pore characterisation in cement pastes[J]. Transp Porous Media, 2000,39(2): 143-157.
[8]赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟[J]. 物理学报, 2011, 90(9): 680-688.
[9]姜素华,李涛,姜雨. 砂岩厚度和物性变化对油气成藏影响的模拟实验[J]. 新疆石油地质,2006,27(1):82-85.
[10]李传亮,龙武. 油气运移时间的计算[J]. 油气地质与采收率,2010,17(6):67-69.
[11]罗晓容,张立宽,廖前进. 埕北断阶带沙河街组油气运聚动力学边程模拟分析[J]. 石油与天然气地质,2007,28(2):191-197.
[12]STANDNES D C. Scaling spontaneous imbibition of water data accounting for fluid viscosities[J]. J Pet Sci Eng,2010,73(1/2):214-219.
[13]秦积舜, 李爱芬. 油层物理学[M]. 东营: 石油大学出版社, 2001: 147-149.
[14]郭文敏, 李治平, 贾国澜,等. 残余油微观分布定量化解释及孔隙微观结构变化研究[J]. 科学技术与工程, 2014,31(14): 32-35.
[15]李留仁, 袁士义, 胡永乐. 分形多孔介质渗透率与孔隙度理论关系模型[J]. 西安石油大学学报(自然科学版), 2010, 25(3): 49-50.

相似文献/References:

[1]朱庆杰,任 瑞,贾海波,等.基于ADINA的多孔介质流固耦合分析[J].常州大学学报(自然科学版),2015,(01):81.[doi:10.3969/ j.issn.2095-0411.2015.01.016]
 ZHU Qing-jie,REN Rui,JIA Hai-bo,et al.Coupling Analysis of Fluid Structure Interaction in Porous Media Based on ADINA[J].Journal of Changzhou University(Natural Science Edition),2015,(01):81.[doi:10.3969/ j.issn.2095-0411.2015.01.016]

备注/Memo

备注/Memo:
收稿日期:2019-06-28。
基金项目:国家重大科技专项资助项目(2009ZX05009006)。
作者简介:郭文敏(1978-),男,河北张家口人,博士,副教授。E-mail:35612059@qq.com
更新日期/Last Update: 2020-01-13